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Some boxes . . .
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A strategic exploration game

A one dollar prize is hidden in one of three boxes with equal probability. You

and I will compete to be the first to find the prize; the winner keeps the dollar!

We may choose the order in which to search the boxes, but must conduct our

search in private.

Box A

πA = 1

pA = 1
3

Box B

πB = 1

pB = 1
3

Box C

πC = 1

pC = 1
3
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Economics

1. The paparazzi problem - Fershtman and Rubinstein (1997): reporters

race to get the scoop on a celebrity staying at one of many hotels in the

city

2. A ranking duel - Immorlica et al. (2011): search engines contend to

provide the correct link to an internet surfer

3. Market servicing: entrepreneurs compete to service a missing market
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A general exploration game

• There are n boxes available, and box i has prize πi with probability pi.

• Two players, player 1 and player 2, simultaneously choose the sequence in
which they explore the boxes. There are two ways of interpreting this
choice as “exploration”:

1. exploration occurs in private and the distribution of the prizes is such that,

after exploring each box the relative incentives for searching each of the

unexplored boxes remains the same, or

2. once the exploration sequence is chosen it cannot be altered.

• Each player can explore one box per unit of time, independent of how

profitable the box is.

• The marginal cost of exploring box i is zero. That is, we are not

concerned with the stopping problem, only the order in which they search.

• The first player to find a prize gets to keep it. If the prize is found at the

same time, then it will be “split” in some predetermined fashion . . .
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Ties

If both players explore box i in the same unit of time then we say that the

players have tied. Denote the share of the prize allocated to player 1 and player

2 as s1, s2 ∈ [0, 1].

There are three cases:

• Split ties where s1 + s2 = 1. For example, there may be some exogenous

random variable determines the split.

• Destructive ties where s1 + s2 < 1. For example, there may be a further

round of costly competition.

• Productive ties where s1 + s2 > 1. For example, there may be some

notion of joint credit.

Today, I will tell you about:

1. completely destructive ties where s1 = s2 = 0, and

2. show, as an example, how you can generalize to even split ties

s1 = s2 = 1
2

.
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Strategies

A pure strategy in this game is a permutation of the set N := {1, 2, . . . , n},
and a mixed strategy is a convex combination of these permutations. Given the

assumptions about time and search speed, having i in the jth position can be

thought of as searching box i at time step j.

Let P1 ∈ ∆P denote the strategy for player 1 where P is the set of all

permutations of N , and P2 for player 2.
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A simple example

Consider a uniform 3 box environment where πA = πB = πC = 6 and

pA = pB = pC = 1
3

.

This gives us the following payoff matrix:

ABC ACB BAC BCA CAB CBA

ABC 0,0 2,2 2,2 2,4 4,2 2,2

ACB 2,2 0,0 4,2 2,2 2,2 2,4

BAC 2,2 2,4 0,0 2,2 2,2 4,2

BCA 4,2 2,2 2,2 0,0 2,4 2,2

CAB 2,4 2,2 2,2 4,2 0,0 2,2

CBA 2,2 4,2 2,4 2,2 2,2 0,0

The (strategically) unique Nash equilibrium of this game is:

P ∗1 = P ∗2 =
1

3
◦ABC +

1

3
◦BCA+

1

3
◦ CAB

This gives each player an expected value of 2.0.
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An irregular example

Consider a non-uniform 3 box environment where πA = 6, πB = 3 and πc = 2,

all with probability one.

This gives us the following payoff matrix:

ABC ACB BAC BCA CAB CBA

ABC 0,0 3,2 6,3 6,5 9,2 6,2

ACB 2,3 0,0 8,3 6,3 6,2 6,5

BAC 3,6 3,8 0,0 6,2 3,2 9,2

BCA 5,6 3,6 2,6 0,0 3,8 3,2

CAB 2,9 2,6 2,3 8,3 0,0 6,3

CBA 2,6 5,6 2,9 2,3 3,6 0,0
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An irregular example: levelling equilibrium

The discrete levelling equilibrium is the following:

P ∗1 = P ∗2 =
1

3
◦ABC +

1

3
◦ACB +

1

6
◦BAC +

1

6
◦BCA

ABC ACB BAC BCA CAB CBA
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BCA 5,6 3,6 2,6 0,0 3,8 3,2

CAB 2,9 2,6 2,3 8,3 0,0 6,3

CBA 2,6 5,6 2,9 2,3 3,6 0,0

This gives each player an expected value of 3.0.
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A new example: asymmetric equilibrium

But consider the following Pareto dominant equilibrium in asymmetric

strategies:

P ∗1 =
2

3
◦ABC +

1

3
◦BAC,

P ∗2 =
2

3
◦ACB +

1

3
◦BCA
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Payoffs

Let xij denote the induced probability that player 1 chooses to search box i in

the jth position given P1, and yij be the corresponding probability for player 2.

v1(x, y) =
∑
i

∑
j

piπixij

∑
k>j

yik+
1

2
yij


Claim: the expected value of the box is all that matters. From here on, let

ri = piπi, and order the index of boxes from highest expected value to lowest.
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Birkhoff–von Neumann

A doubly stochastic (DS) matrix is a square matrix of non-negative real

numbers whose rows and columns sum to 1. That is, if z is a DS matrix then:∑
i

zij = 1 ∀j , and
∑
j

zij = 1 ∀i

This means that x, the matrix who’s entries are given by xij and derived from

P1, is a DS matrix. Further, the Birkhoff-von Nuemann theorem guarantees

that any DS matrix can be represented as a convex combination of

permutation matrices.

While this decomposition may not be a unique, the values for xij remain the

same regardless of the combination of permutations. So it is without loss to

use x and the analogous DS matrix y as our decision variables.
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Equilibrium

As such, the problem for player 1, given y, is the following:

max
x

v1(x, y) s.t.
∑
i

xij = 1 ∀j , and
∑
j

xij = 1 ∀i (1)

where:

v1(x, y) =
∑
i

∑
j

rixij

∑
k>j

yik+
1

2
yij



A Nash equilibrium is then a pair (x∗, y∗), such that x∗ solves problem 1 given

y = y∗, and y∗ solves the equivalent problem for player 2 given x = x∗.
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An equilibrium guess

The existence of a preemptive best reply (i.e. a cyclic shift in the search path)

implies that, at least in the case with destructive ties, there won’t be a pure

strategy Nash equilibrium.

As such, we’d expect mixing to be a key part of any equilibrium. Suppose that

at time step j, given y, player 1 mixes between i and i′. It must be that:

(1−
∑
k≤j

yik)ri = (1−
∑
k≤j

yi′k)ri′

As such let’s look for an equilibrium that “levels” these posterior values at each

time step.
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Building a leveling equilibrium

Take the following 3 box environment and start with zij = 0 ∀i, j.

r

rA

A B

rB

C

rC

A B C
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Building a leveling equilibrium

Define τk as the probability needed to reduce the posterior value of all boxes

with an index equal or lower than k to rk+1.

• So τA = rA−rB
rA

.

r

rA

A B

rB

C

rC

A

z̃A1

B C
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Building a leveling equilibrium

Define ρj as the leveled posterior value of the boxes at time-step j.

• Suppose for this example, rB > ρ1 > rC .

ρ1

zA1
zB1

zC1

r

rA

A B

rB

C

rC

A B C
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Building a leveling equilibrium

The second step proceeds as the last, with an additional 1 unit of probability to

assign among the boxes.

ρ2

zA2

zB2

zC2

ρ1

zA1
zB1

zC1

r

rA

A B

rB

C

rC

A B C
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Building a leveling equilibrium

This algorithm always terminates by levelling all posterior values to zero

(ρn = 0).

ρ3

zA3 zB3

zC3

ρ2

zA2

zB2

zC2

ρ1

zA1
zB1

zC1

r

rA

A B

rB

C

rC

A B C
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The discrete leveling strategy

As such, we can write out the discrete levelling strategy as:

xij =

n∑
k=1

max
{
min{τk, j} −max{τk−1, j − 1}, 0

}
· wik

where:

τk = τk−1 + (rk − rk+1)

k∑
ι=1

1

rι
with τ0 = 0 and rn+1 = 0

and

wik =


∏k
ι=1,ι 6=i rι∑k

l=1

∏k
ι=1,ι 6=l rι

if i ≤ k

0 if i > k

Corollary

τ1 < 1, τj ≤ j ∀j and τn = n.
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Results

Define the discrete levelling profile as the strategy profile where each player

plays the discrete levelling strategy.

Theorem

The discrete levelling profile is the unique symmetric Nash equilibrium of the

completely destructive ties game.

Theorem

The discrete levelling profile achieves the minimax value for each player.
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Some comments

• This analysis extends easily to many players.

• Fershtman and Rubinstein (1997) study uniform games where, despite

having even-split ties, the equilibrium is identical.

• Liu and Wong (2023) study continuous exploration where ties don’t

matter, and so the equilibrium corresponds to the discrete setup with

destructive ties but not more generally.

• The applications an their associated policy choices are important, eg.,

1. innovation and copyright,

2. research and publication, and

3. invention and patents.
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