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Inspection

A core economic activity

• employers interview potential employees

• public funds assess grant applications

• venture capitalists evaluate investment opportunities

Why inspect?

1. discovery or information acquisition

2. verification or screening
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A class of problems

A principal receives an unknown reward from allocating to an agent.

The agent has imperfect private information about this unknown reward; they

receive a unit reward from being allocated to.

The principal may elicit a report from the agent, as well as inspect the reward

at a cost.

The principal can commit to a mechanism, but must do so without transfers.

How should the principal design the inspection and allocation mechanism to

maximize their ex ante expected return?
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Applications

Mechanism design problems with noisy information, costly inspection, and

limited transfers are widespread.

1. Hiring: a firm seeks to fill an open position in their operation with a

potential employee.

2. Grant assignment: a public fund is tasked with assessing a grant

application.

3. Impact investment: a venture capitalist sets the mechanism by which it

reviews and invests in startups.
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A simple solution

Let r be the principal’s reward, and s be the agent’s type, sorted and labelled

by the expected value of the reward.

Symmetric information benchmark:

s
s0 sNsα sβ0

N

no allocation

I

ideal inspection
A

full allocation

Optimal separating mechanism:

s
s0 sNsα sβ0sγ

P

partial allocation

I+

full inspection, allocation if r is sufficiently positive
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Losses

Three types of losses from private information:

1. over-allocation at the bottom,

2. over-inspection at the top and bottom, and

3. under-allocation post-inspection.

Symmetric information benchmark:

s
s0 sNsα sβ0

N

no allocation

I

ideal inspection
A

full allocation

Optimal (separating) mechanism:

s
s0 sNsα sβ0sγ

P

partial allocation

I+

full inspection, allocation if r is sufficiently positive
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Environment

The agent is endowed with a signal, s, about the reward that defines the

agents type.

The principal receives a reward, r, from allocating to the agent, and 0

otherwise.

The agent’s payment is 1 if allocated to, and 0 otherwise.

The principal can inspect the agent to reveal the true reward, r, which costs a

fixed c > 0 to their final payoff.

Direct transfers of value between the principal and agent are prohibited.
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Signals

Suppose s ∈ {s0, s1, . . . , sN}, where s = sn with probability pn ∈ (0, 1),∑
n pn = 1, and Pn is the cmf.

If s = sn, then the reward rn ∼ Πn where Πn is absolutely continuous and

admits a pdf πn.

Suppose that the signals are ordered by the monotone likelihood ratio property,

MLRP.

πn(r1)/πm(r1) ≥ πn(r0)/πm(r0) for all r1 > r0 and n > m

Note that MLRP ⇒ FOSD.

It’s without loss to relabel the signals by their induced expected reward, so that

sn = E(r|sn).
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Timing

The timing of the game is as follows:

1. The principal commits to a mechanism, and nature assigns signals.

2. The agent observes their signal and submits a report to the principal.

3. The principal implements the mechanism conditional on the report and

any reward realizations.

4. All remaining uncertainty is resolved, and rewards are distributed.
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Mechanism

After the agent reports to the principal, what can the principal do?

inspect?

realize r
yes

allocate?

allocate?
no

Then, a mechanism specifies for each type s,

• xs: an inspection rule,

• ys: a pre-inspection allocation, and

• zs,r: a post-inspection allocation for each r.

These are potentially probabilistic choices, so are bounded between 0 and 1.
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Rewards

Principal’s objective:

inspect?

r allocate?
yes r − cyes

−cno

allocate?
no

E(r|s)yes

0no

Agent’s incentives: 1 if allocated to, 0 otherwise.

An optimal allocation is a mechanism that maximizes the ex ante expected

objective subject to incentive compatibility (IC) for each type s:

u(s|s) ≥ u(ŝ|s) ∀ŝ
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Optimal allocation

The principal’s problem:

max
(x,y,z)

∑
n

[(1− xn)ynE(r|sn) + xnψn(zn)]pn

s.t. ICn,m : (1− xn)yn + xnE(zn,r|n) ≥ (1− xm)ym + xmE(zm,r|n) ∀ n,m

F : 0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

where:

• ψn(zn) := E(zs,r.r|s)− c =
∫
rzn,rπn,r dr − c, is the expected reward

from inspecting n with post-inspection allocation rule zn.
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First best policy, ∗

s
s0 sNsα sβ

v

ψ∗

E(r|s)

s
s0 sNsα sβ0

N

x∗
n = 0, y∗n = 0

I

x∗
n = 1, z∗n,r = 1{r ≥ 0}

A

x∗
n = 0, y∗n = 1
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Second best policy, ?

s
s0

sN

sα

sβ

sγ

v

ψ∗

ψ(τ?)

E(r|s)

[1− Πγ(τ?)]E(r|s)

s
s0 sNsα sβ0sγ

P

x?s = 0, y?s = 1− Πγ(τ?)

I+

x?s = 1, z?s,r = 1{r ≥ τ?}
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A solution recipe

Consider a relaxation of the principal’s problem that only requires the upward

local IC constraints to be satisfied. That is:

ICn,n+1 : (1−xn)yn+xnE(zn,r|n) ≥ (1−xn+1)yn+1+xn+1E(zn+1,r|n) ∀ n < N

Claim 1: Optimal post-inspection rules are threshold rules. That is, for each sn

there exists some τn such that allocation only occurs post-inspection if r > τn.

Claim 2: Each upward local incentive compatibility constraint binds. That is,

for each sn, u(sn|sn) = u(sn+1|sn).

Claim 3: Optimal inspection rules are themselves threshold rules. That is,

there exists γ such that the agent is only inspected if sn > sγ .

⇒ Optimal post-inspection thresholds are constant: τn = τ ∀n.
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1. Threshold post-inspection allocation

Claim 1: Optimal post-inspection rules are threshold mechanisms. That is, for

each n there exists some τn such that:

zn,r = 1{r ≥ τn}

Idea: For each n find the τn such that:∫
zn,rπn,r dr =

∫
1{r ≥ τn}πn,r dr

This transformation will always improve the objective, maintain the expected

payoff for n, and weakly reduce the expected deviation payoff for n− 1.
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The transformation

0

1

r r

0r r

zn

πn

18 / 35



MLRP

0

1

r r

0r r

zn

πn−1
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FOSD

0

1

r r

0r r

zn

πn−1
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Threshold tests

Post-inspection allocations are then determined by a simple threshold test.

For the agent:

E(zn,r|n) =

∫
1{r ≥ τn}πn,r dr = 1−Πn(τn)

For convenience, let’s denote:

Πn(τ) := 1−Πn(τ)
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2. Binding ULIC

Claim 2: Each upward local incentive compatibility constraint binds. That is,

for each n < N :

(1− xn)yn + xnΠn(τn) = (1− xn+1)yn+1 + xn+1Πn(τn+1)

Idea: Consider the following partition:

1. S0 := {n | 0 ≥ E(r|sn), 0 ≥ ψn(τn)}

2. Sα := {n | 0 ≥ E(r|sn), ψn(τn) > 0}

3. Sβ := {n | E(r|sn) > 0, ψn(τn) > E(r|sn)}

4. S1 := {n | E(r|sn) > 0, E(r|sn) ≥ ψn(τn)}

Note, that if τn = 0 for each n, this corresponds with our first best policy:

s
s0 sNsα sβ0

S0 Sα Sβ S1
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3. Threshold inspection rules

Claim 3: Optimal inspection rules are threshold mechanisms. That is, there

exists n0 such that xn = 1{n ≥ n0}.

Idea: We can now rewrite (1− xn)yn recursively:

(1− xn)yn = (1− xn+1)yn+1 + xn+1Πn(τn+1)− xnΠn(τn)

= (1− xn+2)yn+2 + xn+2Πn+1(τn+2)− xn+1Πn+1(τn+1)

+ xn+1Πn(τn+1)− xnΠn(τn)

= · · ·

= (1− xN )yN +

N−1∑
m=n

[xm+1Πm(τm+1)− xmΠm(τm)]
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A linear objective

Our value function becomes:

v = (1− xN )yNE(r)

+ xN [ΠN−1(τN )E(r|s ≤ sN−1)PN−1 + ψN (τN )pN ]

+

N−1∑
n=1

xn[Πn−1(τn)E(r|s ≤ sn−1)Pn−1 −Πn(τn)E(r|s ≤ sn)Pn + ψn(τn)pn]

+ x0[−Π0(τ0)E(r|s0)p0 + ψ0(τ0)p0]

This is a linear function in xn. Similar to the proof of claim 2, we can then use

variation arguments to prove that, xn ∈ {0, 1}.

For example, our constraint directly implies that for any consecutive signals

such that xn = xn+1 = 1, then τn = τn+1, as Πn(τn+1) = Πn(τn).
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Optimal separating policy

Given Claims 1-3, we are only left to optimize by selecting:

• γ: the first type to inspect, and

• τ : the threshold for passing those who are inspected.

This is given by:

• the value of those signals below γ, that we partially allocate to, and

• the value of those signals above γ, that we inspect with threshold τ .

max
γ,τ

Pr(r > τ |sγ)E(r|s ≤ sγ) · Pr(s ≤ sγ) + v(I(τ)|s > sγ) · Pr(s > sγ)

This satisfies the global incentive compatibility constraints for all γ and τ , and

thus must be a solution to the original problem.
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Second best solution

s
s0

sN

sα

sβ

sγ

v

ψ∗

ψ(τ?)

E(r|s)

Πγ(τ?)E(r|sγ)

s
s0 sNsα sβ0sγ

P

x?s = 0, y?s = Πγ(τ?)

I+

x?s = 1, z?s,r = 1{r ≥ τ?}
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Losses

Public information benchmark:

s
s0 sNsα sβ0

N

x∗
s = 0, y∗s = 0

I

x∗
s = 1, z∗s,r = 1{r ≥ 0}

A

x∗
s = 0, y∗s = 1

Optimal (separating) mechanism:

s
s0 sNsα sβ0sγ

P

x?s = 0, y?s = Πγ(τ?)

I+

x?s = 1, z?s,r = 1{r ≥ τ?}

Three types of losses from private information:

1. over-allocation: for s ∈ [s0, sγ ], y?s = Πγ(τ?) > 0,

2. over-inspection: for s ∈ [sγ , sα] ∪ [sβ , sN ], x?s = 1, and

3. under-allocation post-inspection: for s ∈ [sγ , sN ] and r ∈ [0, τ?], z?s,r = 0.
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Noisy inspection

Optimal inspection balances discovery and verification.

When agents have noisy private information, the principal:

• over-inspects high and low types,

• under-allocates to agents who are inspected, and

• over-allocates to agents who are not inspected.

Weakening commitment magnifies the losses from over-allocating to agents

who aren’t inspected.

For separating to be optimal, signals need to be sufficiently accurate, costs

sufficiently small and information sufficiently valuable.

Outstanding questions?

28 / 35



References
Alaei, Saeed, Alexandre Belloni, Ali Makhdoumi and Azarakhsh Malekian. 2020. “Optimal Auction Design with Deferred Inspection and

Reward.” SSRN .

Ball, Ian and Deniz Kattwinkel. 2019. “Probabilistic Verification in Mechanism Design.” Working Paper .

Ben-Porath, Elchanan, Eddie Dekel and Barton L. Lipman. 2014. “Optimal Allocation with Costly Verification.” American Economic

Review 104(12):3779–3813.

Border, Kim C. and Joel Sobel. 1987. “Samurai Accountant: A Theory of Auditing and Plunder.” Review of Economic Studies

54(4):525–540.

Epitropou, Markos and Rakesh Vohra. 2019. “Dynamic Mechanisms with Verification.” PIER Working Papers 19:002.

Erlanson, Albin and Andreas Kleiner. 2020. “Costly verification in collective decisions.” Theoretical Economics 15(3):923–954.

Gneiting, Tilmann and Adrian E. Raftery. 2007. “Strictly Proper Scoring Rules, Prediction, and Estimation.” Journal of the American

Statistical Association 102(477):359–378.

Green, Jerry R. and Jean-Jacques Laffont. 1986. “Partially Verifiable Information and Mechanism Design.” The Review of Economic

Studies 53(3):447–456.

Li, Yunan. 2021. “Mechanism design with financially constrained agents and costly verification.” Theoretical Economics 16(3):1139–1194.

McCarthy, John. 1956. “Measures Of The Value Of Information.” Proceedings of the National Academy of Sciences 42(9):654–655.

Mookherjee, Dilip and Ivan Png. 1989. “Optimal Auditing, Insurance, and Redistribution.” The Quarterly Journal of Economics

104(2):399–415.

Mylovanov, Tymofiy and Andriy Zapechelnyuk. 2017. “Optimal Allocation with Ex Post Verification and Limited Penalties.” American

Economic Review 107(9):2666–94.

Pereyra, Juan and Francisco Silva. 2021. “Optimal object assignment mechanisms with imperfect type verification.” Working Paper .

Savage, Leonard J. 1971. “Elicitation of Personal Probabilities and Expectations.” Journal of the American Statistical Association

66(336):783–801.

Siegel, Ron and Bruno Strulovici. 2021. “Judicial Mechanism Design.” Working Paper .

Silva, Francisco. 2019a. “If We Confess Our Sins.” International Economic Review 60(3):1389–1412.

Silva, Francisco. 2019b. “Renegotiation-proof mechanism design with imperfect type verification.” Theoretical Economics 14(3):971–1014.

Townsend, Robert M. 1979. “Optimal contracts and competitive markets with costly state verification.” Journal of Economic Theory

21(2):265–293.

28 / 35



Relaxing commitment

There are three natural relaxations to the commitment assumption:

1. pre-inspection commitment: the principal can commit to pre-inspection

allocations and an inspection rule but cannot commit to post-inspection

allocations,

2. pre-assessment commitment: the principal cannot commit to either an

inspection rule or post-inspection allocations, but can commit to

pre-inspection allocations, and

3. no commitment: the principal cannot commit to allocations or an

inspection rule.

For no commitment, the principal can only choose between the pooling

mechanisms and reports convey no information. We know what this looks like,

so let’s turn to the first two relaxations.
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Pre-assessment commitment

s
s0 sN

sα

sβ

v

v(I|s)

E(r|s)

ΠαE(r|s)

sn
s0 sNsα sβ0

P

partial allocation

I

ideal inspection
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Pre-inspection commitment

s
s0

sNsα sβ

sδ

v

v(I|s)

E(r|s)

ΠδE(r|s)

s
s0 sNsα sβ0sδ

P

partial allocation

I

ideal inspection
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Full commitment

s
s0

sN

sα

sβ

sγ

v

sδ

v(I|s)

E(r|s)

Πγ(τ)E(r|s)

s
s0 sNsα sβ0sγsδ

P

partial allocation

I+

full inspection, allocation if r > τ > 0
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Gaussian environment

Suppose the prior over rewards is given by: r ∼ N(µ, 1), and the agent receives

a signal of this reward, ŝ = r + ε, where ε ∼ N(0, σ2).

Relabelling the signal by the expected reward given the signal, the posterior

distribution of rewards, Πs, is given by: r | s ∼ N(s, σ̂2) where:

s =
σ2

σ2 + 1

[
µ+

ŝ

σ2

]
and σ̂2 =

σ2

σ2 + 1

The induced distribution of signals, P , is then given by: s ∼ N(µ, 1
σ2+1

).

The environment is by a triple:

• µ, the ex-ante expected reward of allocating to an agent,

• α := 1/σ2, the precision of the agent’s signal of the reward, and

• c, the inspection cost to the principal.
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Pooling equilibria

N, no allocation

I, full inspection

A, full allocation

−1 α
0

µ

0

α

1

Figure: third-best policy as a function of precision, α, and prior mean, µ
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Comparative statics

N, no allocation

I, full inspection

A, full allocation

S, semi-separation

−1 α
0

µ

0

α

1

Figure: second-best policy as a function of precision, α, and prior mean, µ
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