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Allocating without transfers

A principal has something of value to an agent.

Information relevant to the principal for allocation is known to the agent and

not the principal.

The principal has no transfers to discipline the allocation.

Examples

• employers hiring from a pool of candidates

• governments funding selected municipalities

• trade commissions allowing merger requests
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Instruments

Other papers,

Evidence: the agent is able to report their private information, and the

principal can verify this report for free.

Verification: the agent is able to report their private information, and the

principal can verify this report for a cost.

This paper,

Information Acquisition: the agent is able to report their private information,

and the principal can acquire additional information for a cost.

→ Call this instrument inspection and think of the agents information as noisy.
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Inspection

A core economic activity

• employers interview candidates

• governments appraise municipalities

• trade commissions assess merger requests

Why inspect?

1. discovery or information acquisition

2. verification or screening
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Today’s setup

Let each agents true value to the principal be binary: high, h, and low, `.

The likelihood agent i is of value h is pi ∈ [0, 1], and is the agents private

information or type. Let πi be the prior likelihood that an agent is of type pi.

The principal receives a reward 1 from allocating to a high agent, −1 from

allocating to a low agent, and 0 from withholding allocation.

An agent receives a unit reward if allocated to, and 0 otherwise.

For a cost c > 0, the principal can inspect an agent and discover their true

value.

The principal can elicit reports, commit to an inspection and allocation

mechanism, but cannot use transfers.
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Mechanism space and objective

Suppose the principal has inspected a set of agents S and has realized a vector

of rewards xS . At this point, she has the following choices:

• inspect i /∈ S, realise xi and re-initialise with the set S ∪ {i}

• stop and allocate to j ∈ S ∪ {0}

The principal ultimately receives her highest found reward, net of any

inspection costs, making her stopping value:

v(S, xS) = max
i∈S∪{0}

xi −
∑
j∈S

cj

The objective is to select a sequential, nonanticipative inspection and

allocation policy that maximizes her expected stopping value.
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Benchmarks

Two benchmark cases to be aware of:

Weitzman (1979) or Pandora’s problem: if types are known to the principal ex

ante this is an instance of assign each agent an index, inspect agents

sequentially from high index to low index until the value of keeping the best

found agent exceeds the next highest index.

Ben-Porath, Dekel and Lipman (2014): If agents are perfectly informed then

Verify the agent with the highest reported type and allocate only to them if

they match that report†
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Forced inspection

Note that the principal must inspect (or search) the agent if they are to

allocate to them.

There are a few reasons why we are comfortable studying this problem:

1. Institutional requirements like due diligence are common.

2. Pandora’s problem is tractable and our construction relies on the

assumption. For difficulties, see Doval (2018).

3. In Optimal Allocation with Noisy Inspection, allocation without inspection

never occurs at the top, and is only used at the bottom to save costs.
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Solution for one agent

Full information benchmark:

p
0 c 1

N

no inspection or allocation

I

full inspection and ideal selection

Optimal separating mechanism:

p
0 τ? c 1

P

partial allocation

I

full inspection and ideal selection
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Solution for multiple agents

Full information benchmark:

p
0 c 1

N

no inspection or allocation

I

Pandora inspection and selection

Optimal separating mechanism:

p
0 τ? c 1

P

partial allocation

R

random inspection and ideal selection
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Technical innovations

To show this result we:

1. recast Pandora’s problem as a dynamic scheduling problem, and

2. show there are necessary and sufficient restrictions on interim allocations

that guarantee ex-post implementation.

The first is due to a characterisation by Bertsimas and Niño-Mora (1996), and

the second is a similar treatment as Che, Kim and Mierendorff (2013) but

dates back to Hassin (1982).

Both however are in the spirit of the reduced form approach e.g. Border (1991).
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Pandora’s problem

A searcher, Pandora, can select one option, a box, from an available set.

Selecting a box gives her an unknown reward drawn from a known distribution.

For a cost, she can investigate, open, the box to discover its true reward.

Weitzman (1979) showed that if Pandora must open a box before being

allowed to select it, then the optimal ordering and stopping rule is indexable.
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2 box, N prize illustration
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Pandora’s rule

For each box i, let its index, zi, be the solution to the following:

ci =
∑
xn>zi

πin(xn − zi)

Weitzman (1979) shows that Pandora’s optimal policy is described by the

following algorithm:

1. Set the reserve value as the value of the outside option, x0.

2. If the highest index among the set of unopened boxes exceeds the reserve

value, open that box. Otherwise, stop and take the reserve value.

3. If the realized prize exceeds the reserve value, replace the reserve value

with this new prize and return to step 2.
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A dynamic scheduling problem

We can re-imagine Pandora’s problem as an infinite horizon dynamic scheduling

problem by following the lead of Bertsimas and Niño-Mora (1996).

A class is a particular state, and if a job is in class j ∈ J and is serviced, then

the scheduler receives a service reward rj and the job transitions to a new class

k ∈ J with transition probability pjk.

For Pandora, j ∈ Ω ∪N ∪ {0} = J , and,

• if j ∈ Ω: rj = −cj and pjn = πjn for all n ∈ N ,

• if j ∈ N : rj = xj(1− β) and pjj = 1, and

• if j = 0: rj = x0(1− β) and p00 = 1.

with β ∈ (0, 1) the associated discount factor over the infinite time horizon.
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2 box, N prize scheduling

a−ca b −cb
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0
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Service time formulation

If U be the set of all admissible policies, then the value of the optimal dynamic

schedule, Z, is:

Z = max

{
Eu

[
∞∑
t=0

∑
j∈J

rj1j(t)β
t

]
| u ∈ U

}
(DSP)

Define λj as the expected discounted number of times a job in class j, and Λ

the space where these service times live, then we can outline an equivalent

mathematical program:

Z = max
∑
j∈J

rjλj s.t. (λj)J ∈ Λ (MP)

It turns out that Λ is fully characterized by a (relatively) small number of

conservation laws . . .
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Pandora’s linear program

. . . and maximising a linear objective over Λ admits an indexable and

decomposable solution!

Theorem 1 (Bertsimas and Niño-Mora)

The performance region, Λ, is an extended polymatroid, and for each class

j ∈ J there exists indices, z, depending only on characteristics of that class,

such that an optimal policy is to schedule a job with the largest current index.

In its generality (Bertsimas and Niño-Mora, 1996), this reproves the celebrated

result of Gittins and Jones (1974).
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A primer on polymatroids

For J , a finite set, and f : 2J → R+, a non-decreasing submodular function, a

polymatroid, P, is defined as the following polytope:

P = {x ∈ RJ+ |
∑
j∈S

xj ≤ f(S) ∀S ⊆ J}

Intuitively, maximising a linear objective over a polymatroid is achieved by

running a greedy algorithm. For example, see Border (1991).

An extended polymatroid is a polymatroid with coefficients, aj,S , that do not

break this greedy characterisation:

Pε = {x ∈ RJ+ |
∑
j∈S

aj,S · xj ≤ f(S) ∀S ⊆ J}
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1 box, 2 prize scheduling problem

a

−c

h

+1× (1− β)

p

`

−1× (1− β)

1− p

0

0× (1− β)

V = max
λ≥0

−cλa + (1− β)λh − (1− β)λ`

s.t. λa + λh + λ` + λ0 = 1
1−β

λa ≤ 1

− pβ
1−βλa + λh ≤ 0

− (1−p)β
1−β λa + λ` ≤ 0

20 / 33



Full information

Suppose Pandora knows p. Then, following our formulation, Pandora’s interim

first best value is given by:

v(p) = max
λ≥0

−cλa + (1− β)λh − (1− β)λ`

s.t. λa + λh + λ` + λ0 = 1
1−β

λa ≤ 1

− pβ
1−βλa + λh ≤ 0

− (1−p)β
1−β λa + λ` ≤ 0

A solution to this problem is λ?, where:

• if pβ − c ≥ 0, then λ?a = 1, λ?h = pβ
1−β , and λ?` = 0, and

• if pβ − c < 0, then λ?0 = 1
1−β .
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First best value and policy

0 p
0

v

1

1

c

c

v

p
0 c

β
1

0

λ?0 = 1
1−β

I

λ?a = 1, λ?h = pβ
1−β , and λ?` = 0
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First best payoff is not incentive compatible

0 p
0

u

1

1

c

u

p
0 c

β
1

0

λ?0 = 1
1−β

I

λ?a = 1, λ?h = pβ
1−β , and λ?` = 0
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Incentive compatibility

The allocations, λh(q) and λ`(q), are only ever given after h or ` has been

observed, and so, the deviation payoff for a type p reporting q is:

u(q|p) =
p

q
λh(q) +

1− p
1− q λ`(q)

Collecting terms gives us a familiar form:

u(q|p) =
λ`(q)

1− q︸ ︷︷ ︸
guarantee

+ p︸︷︷︸
true type

·
[
λh(q)

q
− λ`(q)

1− q

]
︸ ︷︷ ︸

allocation differential

Let the guarantee for report q be denoted by y`(q) and the differential for q be

denoted by ∆(q). The incentive compatibility constraints can be written as:

ICpq : u(p|p) = y`(p) + p∆(p) ≥ y`(q) + p∆(q) = u(q|p) ∀ p, q ∈ P
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Relaxation

Suppose we have a grid of n types, P, ordered such that pi > pj if i < j.

As is common, many IC constraints are redundant. Here, in any second-best

policy, the local upward incentive compatibility constraints must bind and the

differential must be monotone.

That is, for all i < n,

λh(i) + λ`(i) =
pi
pi+1

λh(i+ 1) +
1− pi

1− pi+1
λ`(i+ 1)

and

∆(i) ≤ ∆(i+ 1)
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Second-best payoff and policy

0 p
0

u

1τ?

1

c

u

p
0 τ? c

β
1

a

λ?0 =
pτ?
1−β

I

λ?a = 1, λ?h = pβ
1−β , and λ?` = 0
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Multiple agents

Now suppose there are n agents, indexed i ∈ {1, . . . , n} =: N and let T be the

set of possible types of an agent.

Denote by λij(t) the allocation to agent i ∈ N at state j ∈ Ω at the profile

t = (t1, . . . , tn) of types. In our case, there is a special state, denoted ‘0’ and

the probability of transitioning from state 0 to state j ∈ Ω \ {0} for agent i of

type ti is denoted p(j|ti).

Denote the set of all profiles of types by Tn, and the likelihood of any

particular type as π(t). We will assume that types are independently drawn so

that: π(t) = π(ti)π(t−i).

27 / 33



The reduced form

Let Q denote the interim allocation variables so that:

π(ti)Qij(ti) =
∑
t−i

π(ti)π(t−i)λij(ti, t−i)

The objective function can now be rewritten as:

V =
∑
t∈Tn

π(t)
∑
i∈N

∑
j∈Ω

rjλij(t)

⇒ V =
∑
i∈N

∑
ti∈T

π(ti)
∑
j∈Ω

rjQij(ti)

This says that any two policies that have the same average, or interim, service

times, are equivalent in terms of their value to the principal.
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Transport formulation

Let ∆ := N × T × Ω be the set of interim states or demand nodes and

S := Tn be the set of ex post states or supply nodes.

Let λ(s) = (λ(s, d))d∈N(s) be the ex post allocation or supply at node s ∈ S,

and Q(d) be the interim allocation or demand at node d ∈ ∆.

The total supply from node s to a collection of demand nodes D ⊆ N(s) is, by

our first theorem, bounded by a submodular function g:∑
d∈D

λ(s, d) ≤ g(D|s)
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A 2 agent, 2 type transport problem

(s1, t1)

(s1, t2)

(s2, t1)

(s2, t2)

(s1)

(t1)

(t2)

(s2)
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A general solution

Those familiar with transport problems - e.g. Gale and Shapley (1962) - will

then recognise the type of result we get for this problem.

Theorem 2 (Hassin, Che, Kim and Mierendorff)

There exists a λ such that,

• ∑
s∈N(d) π(s, d)λ(s, d) = Q(d) ∀d ∈ ∆, and

• 0 ≤
∑
d∈D x(s, d) ≤ g(D|s) ∀D ⊆ N(s), s ∈ S

if and only if,

0 ≤
∑
d∈D

π(d)Q(d) ≤
∑

s∈N(D)

π(s)g(D ∩N(s)|s) ∀D ⊆ ∆

Note that this essentially reproves Border (1991).
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Optimal multiple agent mechanism

This means our proof for the one agent case carries through, so long as we

respect these new upper bounds on interim allocations.

Theorem 3 (Threshold Rule)

The optimal separating mechanism sets a threshold τ?, such that for each

agent i,

• if p ≥ τ , Qi0(p) = Qi0(p), Qi`(p) = 0 and Qih(p) = βp
1−βQi0(p), and

• if p < τ , Qi0(p) = βτ
1−βQi0(p), Qi`(p) = β(1−p)

1−β Qi0(p) and

Qih(p) = βp
1−βQi0(p),

where Qi0(p) is set maximally.

Optimal separating mechanism:

p
0 τ? c 1

P

partial allocation

R

random inspection and ideal selection
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Noisy inspection

Optimally informed search balances discovery and verification, at most only

partially exploiting private information to guide search.

To show this we:

1. recast Pandora’s problem as a dynamic scheduling problem, and

2. show there are necessary and sufficient restrictions on interim allocations

that guarantee ex-post implementation.

Limitations?

• Forced inspection → seems innocuous

• Binary prizes → need some flattening e.g. MLRP

• Comparative statics → missing from this treatment
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Khalfan (2023)

Let r be the principal’s reward, and s be the agent’s type, sorted and labelled

by the expected value of the reward.

Symmetric information benchmark:

s
s sα β0

N

no allocation

I

ideal inspection
A

full allocation

Optimal separating mechanism:

s
s sα β0τ

P

partial allocation

I+

full inspection, allocation if r is sufficiently positive
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