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Abstract

A principal receives an unknown reward from allocating to an agent who has private infor-

mation about the reward. Prior to allocating, the principal may elicit a report from the agent

and inspect them at a cost, but must do so without transfers. When the private informa-

tion is noisy, the mechanism that maximizes the principal’s expected return at most segments

signals into two groups; inspecting and conditionally allocating to high types, and partially

allocating to low types. We prove this by reformulating Weitzman (1979) and extending it to

a mechanism design problem through the reduced-form.

1 Overview

Appraising the value of an asset is an essential precursor to its exchange. Employers interview po-

tential employees, public funds assess grant applications, venture capitalists evaluate investment

opportunities. This process is often costly, and information that could be used to lower, or even

circumvent, these costs, is often privately held.

This paper considers a principal whose return from allocating to an agent is inherent, though un-

certain, to the agent they allocate to. The principal has the ability to inspect agents sequentially

at a cost and learn about the true return, as well as the opportunity to receive a report from the

agent. The agent, independent of their private information, strictly prefers to be allocated to.

This early version describes a set of technical results that allow us to find the principal optimal

mechanism, and demonstrates this by deriving the optimal mechanism for a single-agent setting

- essentially reproving Khalfan (2023) and generalising Ben-Porath, Dekel and Lipman (2014) to

noisy information. The paper concludes by outlining how this approach can be used to find the
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optimal mechanism in the multi-agent setting, as well as describing a conjectured solution.

The environment encompasses many important settings. Consider the following.

1. Hiring: a firm, the principal, seeks to fill an open position in their operation with a potential

employee, the agent. The agent would like to be hired and, aware of their own characteristics,

has an estimate of their fit in the position. The principal can ask for this estimate, and

interview the agent themselves, discovering a better forecast of their productivity. The

interview, however, is costly for the principal.

2. Funding: a governing board, the principal, sets the rules by which it allocates a scarce,

publicly owned resource, such as funding for an applicant’s project, the agent. The agent is

interested in being approved, valuing their own use above rival users, and knows the most

about the project’s characteristics, likelihood of success and the project’s social value. The

principal wants to fund positive net value projects.

3. Investing: an investor, the principal, determines the way it evaluates and finances early

investment opportunities, the agents. The investor may be governed by the motivation to

strengthen an existing portfolio and even personal philanthropic concerns, but is restricted

in outlining these preferences publicly. The agent wishes to be financed and expand their

enterprise, and has the most information about the enterprise. This information doesn’t

fully determine the investor’s value for the opportunity without an appraisal.

In this analysis, the principal’s reward is binary, and they must inspect the agent in order to

allocate and receive the reward. These assumptions simplify the exposition but do not restrict

the application, as discussed in section 5.

For the single-agent setting, the mechanism that maximizes the expected return for the principal

has a simple structure. The principal segments agents into two groups: those with sufficiently

favourable information - high signals - and those who do not pass this threshold - low signals.

Agents with high signals are always inspected and only allocated to post-inspection if the discov-

ered reward is positive. Agents with low signals are compensated for their report with a smaller

probability of unconditional allocation.

This segmentation is the only optimal mechanism that does not entirely pool signals. That is, if

the principal finds it too costly to partially-separate, they treat all agents non-preferentially. They

do this by either never inspecting and rejecting all signals, or always inspecting and allocating

only when the realized return is positive. The choice between one of these pooling mechanisms

and the partially-separating mechanism depends on the prior over the rewards, the agent’s signal

accuracy, and the cost of inspection.
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The conjectured multi-agent solution is analogous. From an interim perspective, agents with high

signals are maximally inspected, and allocated to only if the discovered reward is positive. Agents

with low signals are not inspected but compensated with a small probability of unconditional al-

location. This can be implemented by an ex post mechanism that segments reports, randomly

inspects high types, and conditional on not allocating among the high types, randomly selects a

low type to allocate to.

To prove this, we map the canonical search problem of Weitzman (1979) into a linear program

following Bertsimas and Niño-Mora (1996), and re-derive Pandora’s rule. We call this Pandora’s

linear program and, with the inclusion of additional side constraints, allows for the adaption of

Pandora’s rule to the allocation problem at hand. This demonstrates the applicability of the poly-

hedral approach, and contributes to the adaption of Pandora’s rule to a wider class of problems.

Aside from optimal search, this is related to a branch of the mechanism design literature devoted to

costly inspection without transfers and demonstrates how we can recover interesting observations

about search behaviour with noise, a feature mostly missing from the branch. With the addi-

tional assumption that an agent must be inspected prior to selection, this paper seeks to generalise

Khalfan (2023) to multiple agents and Ben-Porath, Dekel and Lipman (2014) to imperfect signals.

Rather than the customary environment setup, we begin with the technical contributions, which

conveniently outlines the full information benchmark for the model that follows. We then move

onto the single-agent setting and conclude with the multi-agent discussion and summary.

2 Pandora’s linear program

The principal’s problem when the agent’s do not have any private information1 is identical to Pan-

dora’s problem, introduced by Weitzman (1979). Adopting the language of Weitzman, a searcher,

Pandora, has a finite set of boxes to select from. Each box contains a prize, drawn independently

from a known distribution, whose realization is initially unknown to Pandora. Opening a box

reveals the prize and allows her to ultimately select the prize to keep, but is costly. She may open

whichever boxes she likes, in whichever order, though she may only select at most one prize.

Weitzman (1979) shows that optimal search is characterized by a simple index rule: assign each

box an index, dependent only on the box’s known characteristics, and sequentially open the box

with the highest index among unopened boxes until the best found prize exceeds the highest

index remaining, in which case Pandora should stop and collect her best found prize. This result

is known as Pandora’s rule, and the associated index is known as the Weitzman index.

1or, equivalently, when the private information is sufficiently uninformative
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In this section, Pandora’s problem is recast as a dynamic scheduling problem. Subsequently, this

problem can be written as a linear program following Bertsimas and Niño-Mora (1996). This

particular program satisfies the sufficient conditions for a solution to be indexable, reproving

Weitzman’s initial result. This section concludes by explicitly deriving the Weitzman index.

The purpose here is to demonstrate how to use Bertsimas and Niño-Mora (1996) to transform

dynamic choice problems into convenient linear programs, and present a version of Pandora’s

problem that is more readily adaptable to other settings - in particular, optimal allocation with

noisy inspection. This can be thought of as analogous to the Border approach of representing

optimal auctions in terms of interim allocations.

2.1 Pandora’s problem and rule

Establishing notation, suppose box i ∈ {a, b, . . . , ω} = Ω conceals a prize of xn, where n ∈
{1, 2, . . . , N} = N , with probability πin, and costs ci > 0 to open. Order N such that n < m

whenever xn > xm. Pandora’s outside option is given by an already open box with prize x0 ≥ 0.

These details for a 2 box, N prize environment are displayed in Figure 1.

Pandora seeks to maximize the value of her highest found prize, net of any search costs. Given a

set of opened boxes S and a realized vector of prizes xS , Pandora’s stopping value is:

v(S, xS) = max
i∈S∪{0}

xi −
∑
j∈S

cj

Pandora’s objective is to select a sequential, nonanticipative opening policy that maximizes her

expected stopping value. Here, nonanticipative refers to the requirement that her policy cannot

depend on the prize realizations of unopened boxes.

For each box i, its index, denoted zi, is the solution to the following:

ci =
∑
xn>zi

πin(xn − zi)

Weitzman (1979) shows that Pandora’s optimal policy is described by the following algorithm:

1. Set the reserve value as the value of the outside option, x0, and continue to step 2.

2. If the highest index among the set of unopened boxes exceeds the reserve value, open that

box and proceed to step 3. Otherwise, stop, take the reserve value and terminate the

algorithm.

3. If the realized prize exceeds the reserve value, replace the reserve value with this new prize

and return to step 2.
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Figure 1: A 2 box, N prize search problem

Refer to this policy as Pandora’s rule and the index, zi, as Weitzman’s index.

A dynamic problem is called indexable if optimal behaviour is fully described by assigning all

potential options an index, ranking these indices into a permutation, σ, and exercising the highest

ranked option available at any decision point. It is also said to be decomposable if the index of

each option depends on characteristics of that option alone. For Pandora’s problem, the potential

options are open box i, for each i ∈ Ω, and stop and select prize n, for each n ∈ N ∪ {0}.
Upon assigning indices for any revealed prize as simply the value of that prize, zn = xn for each

n ∈ N ∪ {0}, it’s clear that Pandora’s problem is both indexable and decomposable.

2.2 A dynamic scheduling problem

We can recast Pandora’s problem as a dynamic scheduling problem, following Bertsimas and

Niño-Mora (1996). In the terminology of queuing theory, a class is a particular state and if a

job is in class j ∈ J and is serviced, then the scheduler receives a service reward rj and the job
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transitions to a new class k ∈ J with transition probability pjk. At each time step, the scheduler

must choose which job to be serviced, determining the reward collected at that step, with the

goal to maximize the expected sum of discounted rewards.

For Pandora, introduce β ∈ (0, 1), a discount factor that exchanges her one-shot returns to

equivalent expected returns over an infinite horizon. We now need to define classes, service

rewards, and transition probabilities that correspond to her decision nodes. Let j ∈ Ω∪N ∪{0} =

J , and,

• if j ∈ Ω: rj = −cj and pjn = πjn for all n ∈ N ,

• if j ∈ N : rj = xj(1− β) and pjj = 1, and

• if j = 0: rj = x0(1− β) and p00 = 1.

That is, if j ∈ Ω, then the job is an unopened box, and servicing the job is costly but transitions

it into an opened box allowing her to reap a future reward. If j ∈ N , then the job is an opened

box, and servicing the job yields the associated (discounted) reward and remains in that class.

Finally, if j = 0, then the job is the outside option and has the same properties as an opened box.

Initializing the system with a single job in each class j ∈ Ω ∪ {0}, the infinite horizon optimal

dynamic servicing problem of these jobs is a discounted analogue of Pandora’s problem that coin-

cides as β → 1. The key details of Pandora’s scheduling problem for a 2 box, N prize environment

are depicted in figure 2, where the coloured nodes are classes with available jobs to service.

To illustrate, suppose at the first time step, the Pandora selects a job in class a (the node coloured

blue) for servicing. She incurs a reward of −ca, that is, she incurs the cost of opening that box.

After servicing, the job transitions stochastically to another class, say, class 1, as depicted in

Figure 2 by the arc (a, 1) terminating in node 1. This transition captures the realized reward

from having opened box a. Suppose at the next time step, Pandora selects the job now in class 1

for servicing. She collects a reward of x1(1− β) and this job never transitions to a new class. If

in all subsequent time steps she always select a job in class 1 for servicing, the discounted payoff

of the policy described is −ca + βx1. As β → 1 this corresponds to the payoff from opening box

a, seeing prize 1, stopping and keeping that prize.

Alternatively, after servicing a job in class a, Pandora may find it preferable to service a job in

class b (the node coloured red). She then incurs a reward of −cb and the job transitions stochas-

tically to another class. Suppose she ultimately decides to service the job in class 0 (the node

coloured green) from then on. The discounted payoff from this policy is −ca− βcb + β2x0, and as

β → 1 this corresponds to the payoff from opening both boxes and taking the outside option.
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Figure 2: A 2 box, N prize scheduling problem

Let U be the set of all admissible policies - which jobs to service after every possible history - and

define 1j(t) as the indicator variable for whether a job in class j is serviced at time t. Then Z,

the discounted sum of rewards from the optimal dynamic schedule, is given by,

Z = max

Eu

 ∞∑
t=0

∑
j∈J

rj1j(t)β
t

 | u ∈ U
 (DSP)

Call this the dynamic scheduling problem (DSP). Define λuj as the expected, discounted service

time of a job in class j under policy u ∈ U . That is,

λuj := Eu

[ ∞∑
t=0

1j(t)β
t

]
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Then the vector of these service times lives in,

Λ =
{

(λuj )J | u ∈ U
}

We can then outline an equivalent mathematical program (MP):

Z = max
∑
j∈J

rjλj s.t. (λj)J ∈ Λ (MP)

We now have a linear objective. For this reformulation to be useful, we need a characterization

of the feasible space of service times, Λ. As it turns out, for this dynamic schedule, Λ is a convex

polytope - the intersection of a finite number of half-spaces - and thus, MP is a linear program.

Furthermore, Λ is an extended polymatroid - a convex polytope defined by a submodular function

- and thus the linear program can be solved with a greedy algorithm which corresponds to an

index policy. Note that extended polymatroids generalize the notion of polymatroids, which are

used in Border’s reduced form characterization.

2.2.1 Conservation laws

To characterize the feasible space of service times, Λ, we first derive a set of conservation laws

regarding the service times to identify inequalities that any job must satisfy. Subsequently, we

are going to show that these inequalities are not only necessary but sufficient for describing Λ.

This derivation is detailed in appendix A.1, but a brief outline is included here.

First, with the inclusion of the outside option, the scheduler never stands to strictly benefit from

being idle. As such, one job must be serviced in each time period:

∑
j∈J

λuj =
1

1− β
∀u ∈ U (1)

Secondly, we include an expression about the maximum possible service time under all admissible

policies, u ∈ U , as they pertain to classes in subset S. From the sets individual classes, we can

build conservation laws for all subsets, S, providing upper bounds on the total service times for

jobs in those subsets (see appendix A.1 and the inequalities 2.1, 2.2, and 2.3). Conveniently, these

subsets fall into two interesting cases.

In the first, if 0 ∈ S, then the subset of jobs can be serviced immediately and indefinitely by

servicing the outside option. This gives us the following, mostly redundant, inequality:

∑
j∈S

λuj ≤
1

1− β
∀u ∈ U (3.1)

For the second, suppose 0 /∈ S. Then S can be partitioned into two sets: SΩ := S ∩ Ω, and
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SN := S ∩N . The following priority policy intuitively achieves this maximum:

1. Service all jobs in SΩ.

2. If any job from SΩ has transitioned into a class from SN , service this job indefinitely.

3. If no job from SΩ has transitioned into a class from SN , then service remaining jobs in

Ω\SΩ, until a job transitions into a class from SN and then service this job indefinitely.

Evaluating this policy and rearranging to follow convention that choice variables are collected on

the left-hand side of the constraints, we have our final conservation law:

∑
j∈S

λuj−β|S
Ω|
[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
][ ∑
i∈Ω\SΩ

λui
∑
j∈SN

pij
β

1− β

]
≤ 1

1− β

[
1−β|SΩ|

[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
]]
∀u ∈ U

(3.2)

Inequalities 3.1 and 3.2 generalise the singleton set expressions, and as such, along with 1, they

define the maximal service time region, L:

L := {λ ∈ R|J |+ | λ satisfy 1, 3.1, and 3.2}

2.2.2 Sufficiency

Bertsimas and Niño-Mora (1996) show that if the feasible space of service times satisfy general-

ized conservation laws, then they can be represented as an extended polymatroid. This means that

optimizing a linear objective over the feasible space will not only yield an extreme solution, but

the extreme solution is characterized by a priority-index over classes. Conditional on one further

assumption on the structure of the feasible space, the index is also decomposable. These are the

subject of Bertsimas and Niño-Mora (1996)’s Theorem 1, 2, and 3.

The scheduling problem presented here is a special case of the classic multiarmed bandit problem.

In particular, it is a multiarm bandit with one intransient arm, the outside option, and N transient

arms, the unopened boxes. The transient arms are available from the start, and stochastically map

into payoff-varied intransient arms, the opened boxes. The multiarmed bandit problem is shown

to be a satisfy Bertsimas and Niño-Mora’s generalized conservation laws in Proposition 8 and

Theorem 11. Given our problem is simpler than the general multiarm bandit problem, these

results are refined and restated in the following theorem.

Theorem 1 The performance region, Λ, is the extended polymatroid defined by the maximal

service region, L. Further, for each class j ∈ J there exists indices, z, depending only on char-

acteristics of that class, such that an optimal policy is to schedule a job with the largest current

index.
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Note that, in its original generality, this reproves the celebrated result of Gittins and Jones (1974):

there exists a decomposable index that dictates the optimal scheduling of projects in the multiarmed

bandit problem. For our problem, this proves that the schedule’s solution is also characterized by

a decomposable priority-index, which we can directly take advantage of.

2.3 Pandora’s schedule

Making the most of these properties, we can explicitly solve for the optimal schedule.

Theorem 2 The solution to Pandora’s schedule is given by an indexing rule defined by an index,

z, where if j ∈ N ∪ {0} then zj = rj, and, if j ∈ Ω, then zj is the solution to:

−rj =
∑
i∈N
ri>zj

pji(ri − zj)

As outlined in section A.2, Pandora’s scheduling problem satisfies Bertsimas and Niño-Mora’s

generalized conservation laws and so the feasible space of achievable performance is an extended

polymatroid. Optimization of a linear objective over an extended polymatroid is solved by an

adaptive greedy algorithm, which leads to an optimal solution having the indexability property.

Further, this extends to the decomposability property, which means the indices must apply to all

sub-problems. Then, by normalizing the index for the outside option as the value of the outside

option itself: z0 = r0, we can build the optimal index by considering sub-problems that only

include pairs of possible jobs. The full proof is included in appendix A.3.

Pandora’s rule is then given by the limiting behaviour of the optimal schedule, referred to as

Pandora’s schedule.

Corollary 1 As β → 1, Pandora’s schedule is precisely Pandora’s rule.

Pandora’s problem is now fully described by this linear program which takes as inputs a vector of

returns for opening or selecting a box in each class, r, and a transition matrix of unopened boxes

into prizes, p, and outputs a vector of service times for each class, λ. While these service times

describe discounted expected behaviour over an infinite horizon, they can easily be translated into

the undiscounted, finite horizon of Weitzman by taking the limiting behaviour as the discount

approaches one, β → 1.

Adapting this program to other environments then involves remapping the returns from opening

and selecting, r, or introducing additional constraints on the service times, λ. For example:

• we may want to adapt r to reflect the concern that Pandora may have discovered a prize

but subsequently lost it to a rival searcher, or
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• we may want to restrict the choice of λ so that the boxes and their known characteristics

are indeed available to Pandora; that is individual rationality and incentive compatibility.

Then, the simplest adaptions involve an alteration to the index, reflecting changes to the cost-

benefit analysis, and more advanced adaptations involve the introduction of side constraints,

that must live within the generalized conservation laws for the problem to continue to have the

properties highlighted here. To demonstrate this, consider the single-agent environment of the

informed-agent allocation problem.

3 Single-agent environment

Now take a single box, a, that contains a high, h, prize with probability p ∈ [0, 1], and a low, `,

prize with complementary probability 1−p. For a cost c > 0, the searcher, Pandora, can discover

which prize the box contains and have the option of keeping the prize. Alternatively, at any point,

she can take an outside option. Let Pandora’s payoff from accepting the high prize be 1, the low

prize, −1, and the outside option, 0. Following Pandora’s Linear Program, this problem can be

recast as the scheduling problem depicted in the Figure 3.

a

−c

h

+1× (1− β)

p

`

−1× (1− β)

1− p

0

0× (1− β)

Figure 3: A simple 1 box, 2 prize scheduling problem

3.1 Full information

Suppose Pandora knows p. Then, following the formulation in Pandora’s linear program, her

interim first best value is given as:

v(p, β) = max
λ≥0

−cλa + (1− β)λh − (1− β)λ`

s.t. λa + λh + λ` + λ0 = 1
1−β

λa ≤ 1

− pβ
1−βλa + λh ≤ 0

− (1−p)β
1−β λa + λ` ≤ 0
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A solution to this problem is λ?, where:

• if pβ − c ≥ 0, then λ?a = 1, λ?h = pβ
1−β , and λ?` = 0, and

• if pβ − c < 0, then λ?0 = 1
1−β .

Evaluating the value as β → 1,

v(p) = max{p− c, 0}

Reading this as a solution to the original problem: Pandora opens the box if her expected reward

from keeping only the high prize exceeds the cost of opening the box. Otherwise, she takes the

outside option.

Suppose that this box is initially drawn from a finite distribution Π with support on P, such that

π(p) is the probability the box has type p. For reference, let |P| =: n. Then the ex ante first

best value is given as:

V =
∑
p∈P

π(p)v(p)

Enumerating by summing over the interim first best:

V =
∑
p≥c

π(p)(p− c)

The interim first best value and policy are summarised in figures 4 and 5 respectfully.

3.1.1 A general solution

It is important in what follows to know what the solution looks like when the rewards for selecting

are generalised. Suppose the reward for scheduling node h is rh(1 − β) and node `, r`(1 − β).

Then the problem is given by:

v(p, β) = max
λ≥0

−cλa + rh(1− β)λh + r`(1− β)λ`

s.t. λa + λh + λ` + λ0 = 1
1−β

λa ≤ 1

− pβ
1−βλa + λh ≤ 0

− (1−p)β
1−β λa + λ` ≤ 0

A solution is given by λ?, where:

1. if rh, r` ≥ 0, then λ?a = 1{−c+ rhpβ + r`(1− p)β ≥ 0}, λ?h = pβ
1−βλ

?
a and λ?` = (1−p)β

1−β λ?a,

2. if rh ≥ 0 > r`, then λ?a = 1{−c+ rhpβ ≥ 0}, λ?h = pβ
1−βλ

?
a and λ?` = 0,

3. if r` ≥ 0 > rh, then λ?a = 1{−c+ r`(1− p)β ≥ 0}, λ?h = 0 and λ?` = (1−p)β
1−β λ?a, and
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0 p
0

v

1

1

c

c

v

Figure 4: interim first best value, v, as a function of high prize probability, p, given a cost, c > 0

p
0 c

β
1

0
λ?0 = 1

1−β

I
λ?a = 1, λ?h = pβ

1−β , and λ?` = 0

Figure 5: first-best policy, (λ?a, λ
?
h, λ

?
` , λ

?
0)

4. if 0 > rh, r`, then λ?h = 0, λ?` = 0 and λ?a = 0.

With 1{Q} the indicator function that is equal to 1 if the statement Q is true given the arguments,

and 0 otherwise.2

3.2 Private information

Now suppose Pandora does not know p, but the box does. Refer to this as the boxes type.

The distribution of types, as before, is Π and common knowledge. The box strictly prefers to

be selected than not and has no direct payoff from their type. Let their ex post payoff be 1 if

selected, and 0 otherwise.

If Pandora knows their type, p, and institutes a solution λ, then the boxes interim payoff is simply

the gross probability that they are selected and so:

u(p, β) = (1− β)λh(p) + (1− β)λ`(p)

Suppose Pandora tries to implement the first best policy. Then, conditional on the boxes report-

2The standard definition of an indicator function is 1A(x) := 1 if x ∈ A and 0 if x /∈ A. We’re more interested
in the set A and less in the argument x, so suppress the argument and promote the set.
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ing truthfully, their (normalised) payoffs are given in figure 6.

0 p
0

u

1

1

c

u

Figure 6: interim payoffs under the first best policy, u, as a function of type, p, given a cost, c

There are two reasons, however, why Pandora may not be able to implement this rule. Suppose

there are only two types, p0 = c − ε and p1 = c + ε. Then clearly this policy isn’t incentive

compatible as any report that gives p0 a positive probability of being searched and ultimately

selected, has a payoff that exceeds that of reporting they are p0, the unsearchable type. Secondly,

it isn’t immediately clear whether Pandora can award such a deviation payoff, as the policy is in

terms of ex-ante service times, achievable by a convex combination of extreme priority policies,

and thus a function of the box’s true type.

As such, let us carefully derive outline the deviation payoffs and then study the incentive com-

patibility constraints. By normalising for (1− β) we get:

u(q|p) =
p

q
λh(q) +

1− p
1− q

λ`(q)

Collecting terms that depend on the true type p gives us the following convenient form:

u(q|p) =
λ`(q)

1− q
+ p ·

[
λh(q)

q
− λ`(q)

1− q

]
The first term is a guaranteed allocation from reporting q, and the second term is an allocation

differential, or bonus, from receiving a high draw, scaled by the agents true type p.3 Let the

3Of course the bonus could, in principle, be negative and thus the first term isn’t necessarily guaranteed. We’ll
see later that bonuses are optimally positive.

14



differential for an arbitrary q be denoted by ∆(q). That is:

∆(q) =
λh(q)

q
− λ`(q)

1− q

Further, to condense notation, let y`(q) denote the scaled low draw allocation, and yh(q) the high.

That is:

y`(q) =
λ`(q)

1− q
, yh(q) =

λh(q)

q

Then the incentive compatibility constraints can be written as:

ICpq : u(p|p) = y`(p) + p∆(p) ≥ y`(q) + p∆(q) = u(q|p) ∀ p, q ∈ P

3.2.1 Virtual-ultity hypothesis

Order and index P so that pi > pj if i < j. We will promote the index i to the argument where

it does not cause confusion. The following lemma allows us to reduce the number of incentive

compatibility constraints from n(n − 1) global constraints to n − 1 equality constraints, ICi,i+1

binds for all i < n, and n− 1 inequality constraints, ∆(i) ≤ ∆(i+ 1) for all i < n.

Lemma 1 Local upward incentive compatibility binds under the second-best policy. That is, if

λ = λ∗, then ICi,i+1 binds for every i < n.

This is detailed in appendix B.1 but is the inspection and allocation equivalent of the analogous

result from optimal auctions: local upward incentive compatibility and monotonicity of the al-

location are both sufficient and necessary. This is less straightforward without the inclusion of

transfers, but is none-the-less true.

Before outlining and proving the optimal mechanism, let’s consider the standard virtual-utility

hypothesis. Proceed by assuming monotonocity, and working only with the upward local IC

constraints. From lemma 4, we have that for each i ∈ {1, . . . , n− 1}:

λh(i) + λ`(i) =
pi
pi+1

λh(i+ 1) +
1− pi

1− pi+1
λ`(i+ 1)

Subtracting the left hand-side from the right, and attaching a non-zero multiplier µi:

0 = µi ·
[
pi
pi+1

λh(i+ 1) +
1− pi

1− pi+1
λ`(i+ 1)− λh(i)− λ`(i)

]
Including the expression on the right-hand side into our objective means that we can separate

the ex ante second-best problem type-wise where the multipliers link the interim problems. For

symmetry, also include a dummy constraint for i = 0 and i = n, where µ0 = 0 and µn = 0. These
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sub-problems now resembles the general problem outlined in section 3.1.1:

v(i, β) = max
λ(i)≥0

−cλa(i) + rh(i)(1− β)λh(i) + r`(i)(1− β)λ`(i)

s.t. λa(i) + λh(i) + λ`(i) + λ0(i) = 1
1−β

λa(i) ≤ 1

− piβ
1−βλa(i) + λh(i) ≤ 0

− (1−pi)β
1−β λa(i) + λ`(i) ≤ 0

where:

rh(i) = 1 + µi−1
pi−1

pi
− µi

and

r`(i) = −1 + µi−1
1− pi−1

1− pi
− µi

The solution is given by λ?, where:

1. if rh, r` ≥ 0, then λ?a = 1{−c+ rhpβ + r`(1− p)β ≥ 0}, λ?h = pβ
1−βλ

?
a and λ?` = (1−p)β

1−β λ?a,

2. if rh ≥ 0 ≥ r`, then λ?a = 1{−c+ rhpβ ≥ 0}, λ?h = pβ
1−βλ

?
a and λ?` = 0,

3. if r` ≥ 0 ≥ rh, then λ?a = 1{−c+ r`(1− p)β ≥ 0}, λ?h = 0 and λ?` = (1−p)β
1−β λ?a, and

4. if 0 ≥ rh, r`, then λ?h = 0, λ?` = 0 and λ?a = 0.

The task is then to find multipliers that minimize this expression. We will do this directly with the

dual in the next section, however note that we know from 2 that the solution must be represented

by a decomposable index. As a result, any analogous problems, such as the interim version of the

multi-agent setting, must also be described by a decomposable index.

3.2.2 Optimal mechanism

We can now show that there are only three types of solution to our problem. For reference, let’s

label these as follows:

• Full ideal inspection: Open any box i and keep only if i has a high draw,

λa(i) = 1, λah(i) = pi
β

1− β
and λa`(i) = 0 for all i

• Partial separation: Given a threshold t, open any box i that is above t and keep only if i has

a high draw, and open box any i below t with probability pt and unconditionally allocate,

λa(i) = 1, λah(i) = pi
β

1− β
and λa`(i) = 0 for all i > t

λa(i) = pt, λah(i) = ptpi
β

1− β
and λa`(i) = pt(1− pi)

β

1− β
for all i ≤ t
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• No allocation: Never open any box i,

λa(i) = λah(i) = λa`(i) = 0 for all i

Then the optimal mechanism is given by the following theorem.

Theorem 3 Full ideal inspection is optimal if all types are sufficiently high, and no allocation is

optimal if all types are sufficiently low. That is,

• if piβ − c ≥ 0 for all i, full ideal inspection is optimal, and

• if piβ − c ≤ 0 for all i, no allocation is optimal.

Partial separation is optimal if the first best treats different types differently and if the value of

partial separation is positive. That is, if p1β − c < 0 and pnβ − c > 0, and Vt ≥ 0, partial

separation is optimal where t is set to maximise

Vt =
∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c)

Finally, no allocation is optimal if the first best treats different types differently and if the value

of partial separation is negative.

We prove this by first changing variables into a convenient representation, and then showing there

is an equivalent solution for the dual in each case. This is done in appendix B.2 and B.3 and the

first part is listed as proposition 1 and the second and third as proposition 2.

This first part of the theorem should be unsurprising: if the first best is incentive compatible, then

the first best is achievable. The interesting case is when types fall on either side of this threshold

and the first best isn’t achievable, which is described by the second and third part of the theorem.

Note that partial separation generalises full ideal inspection, and so in an operational sense, there

are only two policy’s to evaluate and compare: partial separation and no allocation.

The second-best payoffs and policy are summarised in figures 7 and 8 respectfully for a distribu-

tion where the first best treats different types differently and if the value of partial separation is

positive. The underlying distribution for these representations is inherently continuous (though

it need not be), so let τ∗ := pt∗ .

Note that, with the additional assumption that the principal must inspect before they allocate and

the restriction to binary prizes, this reproves the main result of Khalfan (2023). The mechanism

also aligns with Ben-Porath, Dekel and Lipman (2014) as the noise in the signal tends to zero

with the exception that the return to the principal here is reduced by the cost of inspecting types

that do not meet the threshold.
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Figure 7: second-best payoffs, u∗, as a function of high prize probability, p, given a cost, c > 0

p
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β
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Figure 8: second-best policy, (λ∗a, λ
∗
h, λ
∗
` , λ
∗
0)

4 Multi-agent environment

Now suppose there are n agents, indexed i ∈ {1, . . . , n} := N . Let T be the set of possible

types of an agent. Denote by xij(t) the allocation to agent i ∈ N at state j ∈ Ω at the profile

t = (t1, . . . , tn) of types. In our case, there is a special state, denoted ‘0’ and the probability of

transitioning from state 0 to state j ∈ Ω \ {0} for agent i of type ti is denoted p(j|ti). Denote the

set of all profiles of types by Tn. In our case, state will be a symbol used to denote whether the

box has been opened and, if opened, the reward associated with the box.

4.1 Reduced form

For every profile of types t we have a non-negative, non-decreasing, submodular function g(·|t)
defined on subsets of N × Ω. An allocation rule is ex-post feasible if∑

(i,j)∈S

xij(t) ≤ g(S|t) ∀S ⊆ N × Ω, t ∈ Tn

and

xij(t)− aj(ti)xi0(t) ≤ 0 ∀i ∈ N ti ∈ T, j ∈ Ω \ {0}
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Note that aj(ti) does not depend on the entire profile of types. Call the first set total conservation

constraints as they restrict the total service time of states within a particular subset, and the sec-

ond transition conservation constraints as they only restrict the service time of states in transition.

It will be more convenient to write these constraints by weighting them by the likelihood of the

type profile, π(·): ∑
(i,j)∈S

π(t)xij(t) ≤ π(t)g(S|t) ∀S ⊆ N × Ω, t ∈ Tn

π(t)xij(t)− π(t)aj(ti)xi0(t) ≤ 0 ∀i ∈ N ti ∈ T, j ∈ Ω \ {0}

Let Q denote the interim allocation variables so that:

π(ti)Qij(ti) =
∑
t−i

π(ti)π(t−i)xij(ti, t−i)

Given any S ⊆ N×Ω let SN be the ‘projection’ of S into N . In words the set of agents associated

with S.

The feasible Qs must satisfy the interim version of these two sets of constraints.

Consider first the total conservation constraints. For a particular subset S and profile t:∑
(i,j)∈S

xij(t) ≤ g(S|t)

Weigh this by the likelihood of profile t and sum over all profiles:∑
(i,j)∈S

∑
t

π(t)xij(t) ≤
∑
t

π(t)g(S|t).

An important feature of g(S|tSN , t−SN ) in our application is that it is independent of t−SN , i.e.

g(S|tSN , t−SN ) = g(S|tSN ). Replacing for our interim variables and simplifying the right-hand

side: ∑
(i,j)∈S

∑
ti

π(ti)Qij(ti) ≤
∑
tSN

π(tSN )g(S|tSN )

The class of submodular functions is closed under non-negative linear combinations, so the right-

hand side is still submodular. Let G(S) =
∑

tSN
π(tSN )g(S|tSN ). We then have our interim total

conservation constraint : ∑
(i,j)∈S

∑
ti

π(ti)Qij(ti) ≤ G(S) ∀S ⊆ N × Ω (1)

The interim transition conservation constraint are more straightforward to derive, simply weight-
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ing by the likelihood of profile t:

π(ti)Qij(ti)− π(ti)aj(ti)Qi0(ti) ≤ 0 ∀i ∈ N ti ∈ T, j ∈ Ω \ {0} (2)

⇒ Qij(ti)− aj(ti)Qi0(ti) ≤ 0

Bayesian incentive compatibility for each agent i with type ti is also straightforward:

∑
j∈Ω\{0}

Qij(ti) ≥
∑

j∈Ω\{0}

p(j|ti)
p(j|t′i)

Qij(t
′
i) ∀t′i. (3)

Remember, that while all feasible Qs must satisfy these three constraints, it is not necessarily

true that all Qs that satisfy them are feasible. That is, there may not exist an ex-post feasible

x that generate any particular Q, and so must be verified later. Further, it is not guaranteed

that there exists an ex-post feasible x that generates Q that is additionally dominant strategy

incentive compatible, and must be verified (or disproven) later.

The ex ante objective function written with ex post variables is the following:

V =
∑
t∈TN

∑
j∈Ω

∑
i∈N

rjxij(t)

π(t) =
∑
i

∑
j

rj

[∑
t

xij(t)π(t)

]

We can then split the type space to get a familiar interim form:

V =
∑
i

∑
j

rj

∑
ti

∑
t−i

xij(t)π(ti)π(t−i)

 =
∑
i

∑
j

rj

[∑
ti

Qij(ti)π(ti)

]

As such we have an interim version of the objective function which is just the sum of interim

values over agents and their types:

V =
∑
i

∑
ti

∑
j

rjQij(ti)

π(ti)

In our binary setup, we set p(2|ti) = ti and p(1|ti) = 1 − ti. Thus, type is the probability distri-

bution over states. Then let r0, r1 < 0 and r2 > 0.

Inequality (2) becomes:

π(ti)Qij(ti)− π(ti)
βp(j|ti)
1− β

Qi0(ti) ≤ 0 ∀i ∈ N ti ∈ T, j ∈ {1, 2}
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Inequality (3) reduces to

Qi1(ti) +Qi2(ti) ≥
(1− ti)
(1− t′i)

Qi1(t′i) +
ti
t′i
Qi2(t′i) ∀t′i.

The usual argument tells us that IC implies:

Qi2(ti)

ti
− Qi1(ti)

1− ti
≥ Qi2(t′i)

t′i
− Qi1(t′i)

1− t′i
∀ti ≥ t′i (4)

The converse need not be true. We can argue that the adjacent upward IC and constraint (4)

suffice just as in the single-agent setting.

Suppose the rewards at each of the states are r0, r1 and r2 and are agent independent. Suppose

the probability that an agent is in state 2 can be {0, 1
m ,

2
m , . . . ,

m−1
m , 1}. Then, a generic upward

adjacent IC constraint for agent i with type k < m is

Qi1(k) +Qi2(k) ≥
(1− k

m)

(1− k+1
m )

Qi1(k + 1) +
k
m
k+1
m

Qi2(k + 1).

⇒ Qi1(k) +Qi2(k) ≥ m− k
m− k − 1

Qi1(k + 1) +
k

k + 1
Qi2(k + 1).

When k + 1 = m, then, m−k
m−k−1 is undefined. However, this corresponds to the case when the

probability of state 1 is zero, so assume Qi1(m) = 0. And similarly, monotonicity

Qi2(k + 1)
k+1
m

− Qi1(k + 1)

1− k+1
m

≥ Qi2(k)
k
m

− Qi1(k)

1− k
m

⇒ Qi2(k + 1)

k + 1
− Qi1(k + 1)

m− k − 1
≥ Qi2(k)

k
− Qi1(k)

m− k

4.2 Lagrangian

Before continuing, let’s recall the Lagrangian approach. Suppose we wish to solve Z = max{cx :

s.t. Ax ≤ b, Cx ≤ d, x ≥ 0}. Let µ ≥ 0 be the shadow price associated with Cx ≤ d. Then

L(µ) = max{cx+ µ(d− Cx) : s.t. Ax ≤ b, x ≥ 0}.

Further, Z = minµ≥0 L(µ). Let µi(k, k + 1) ≥ 0 be the shadow price associated with the upward

adjacent IC constraint. Note that we will have variables of this kind for 0 ≤ k ≤ m− 1 only. The

objective function we are maximizing will be∑
i

∑
ti

π(ti)[r0Qi0(ti) + r1Qi1(ti) + r2Qi2(ti)].
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If we take the IC constraint into the objective function, we will be introducing terms of the

following kind into the objective function:

µi(k, k + 1)[− m− k
m− k − 1

Qi1(k + 1)− k

k + 1
Qi2(k + 1) +Qi1(k) +Qi2(k)]

This gives us an objective,

L(µ,Q) =
∑
i

m∑
k=0

π(k)[r0 + r1Qi1(k) + r2Qi2(k)]

+
∑
i

m−1∑
k=0

µi(k, k + 1)[Qi1(k) +Qi2(k)− m− k
m− k − 1

Qi1(k + 1)− k

k + 1
Qi2(k + 1)]

Setting Qi1(m) = 0 and collecting terms, the objective becomes:

L(µ,Q) =
∑
i

〈π(0)r0Qi0(0) + [π(0)r1 + µi(0, 1)]Qi1(0) + [π(0)r2 + µi(0, 1)]Qi2(0)

+
m−1∑
k=1

{π(k)r0Qi0(k) + [π(k)r1 + µi(k, k + 1)− m− k + 1

m− k
µi(k − 1, k)]Qi1(k)

+ [π(k)r2 + µi(k, k + 1)− k − 1

k
µi(k − 1, k)]Qi2(k)}

+ π(m)r0Qi0(m) + [π(0)r2 −
m− 1

m
µi(m− 1,m)]Qi2(m)〉

4.3 Threshold conjecture

As we can see, the structure of the reduced form mirrors the single-agent setting and as such,

it’s reasonable to guess that it too must follow a threshold structure. This gives us the following

conjecture.

Conjecture 1 The optimal mechanism sets a threshold t, such that for each agent i,

• if k ≥ t, Qi0(k) = Qi0(N), Qi1(k) = 0 and Qi2(k) =
β k
m

1−βQi0(k), and

• if k < t, Qi0(k) = Qi0(0), Qi1(k) =
β(1− k

m
)

1−β Qi0(k) and Qi2(k) =
β k
m

1−βQi0(k).

That is, high types are inspected maximally and allocated to efficiently, and low types are compen-

sated with a small probability of inspection and unconditional allocation that makes the marginal

type indifferent. The task is then to solve for Qi0(N) and Qi0(0), show that this solution also

minimizes the analogous dual problem, and verify that there is an ex post mechanism that im-

plements the conjecture - also presumably a threshold mechanism. We leave this task for future

versions of the paper.
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5 Summary

When a principal wishes to allocate a scarce resource among privately informed, rival users without

transfers, they must balance the discovery of new information via inspection with the verification

of private information. Optimally, they do this by at most partially exploiting private information

to guide search. In particular, the principal over-inspects high and low types, under-allocates to

agents who are worthy of inspection, and over-allocates to agents who are not.

This is related to a branch of the mechanism design literature devoted to costly inspection without

transfers and demonstrates how we can recover interesting observations about search behaviour

with noise, a feature mostly missing from the branch. With the additional assumption that an

agent must be inspected prior to selection, this paper generalises Khalfan (2023) to multiple agents

and Ben-Porath, Dekel and Lipman (2014) to imperfect signals.

A feature of the setup that may seem restrictive is that rewards are binary. Recall that in optimal

auctions - considering Myerson (1981) in particular - the type space is typically single dimensional.

Here, if the reward space is expanded, our types are now a a distribution over many rewards so

may be many dimensional. As such, some structure must be imposed to give us a uni-dimensional

order, essentially reducing the problem back to the analogous setup here. For example, Khalfan

(2023) demonstrates that when rewards are general and signal distributions are ordered by the

monotone likelihood ratio property, the same result applies with an additional threshold with

respect to the rewards to determine which rewards are high and which are low.

A second feature is that the principal must inspect the agent in order to allocate and receive the

value. There are several reasons we are comfortable studying this restriction. Firstly, in many

institutional settings, the principal is required to complete this step prior to allocation, i.e. due

diligence, and so is a realistic feature in and of itself. Secondly, this assumption is consistent

with, and a necessary feature of, the treatment in Bertsimas and Niño-Mora (1996) - and by

extension Weitzman (1979). This assumption makes Pandora’s problem tractable and allows for

the technical treatment we have presented. For the complications that arise with this problem

when there is not necessary inspection, see Doval (2018). Finally, in comparing the result here

to Khalfan (2023) and Ben-Porath, Dekel and Lipman (2014), we see that the structure of the

solution is the same with the caveat that it is more costly to allocate to low type agents. As

such, one could then take the results here, increase the value to the principal by taking away this

requirement for inspecting low agents, and be confident that the resulting mechanism is likely to

also be optimal in this new environment.

Future versions of this paper will evaluate the multi-agent conjecture and confirm that it’s ex

post implementable.
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A Pandora’s linear program

In this section of the appendix, the details for the linear program translation are expanded upon.

In particular, section A.1 steps through the conservation laws, section A.2 proves they’re sufficient,

and A.3 completes the proof.

A.1 Conservation laws

To characterize the feasible space of service times, Λ, we first derive a set of conservation laws

regarding the service times to identify inequalities that any job must satisfy. Subsequently, we

are going to show that these inequalities are not only necessary but sufficient for describing Λ.

First, with the inclusion of the outside option, the scheduler never stands to strictly benefit from

being idle. As such, one job must be serviced in each time period:

∑
j∈J

λuj =
1

1− β
∀u ∈ U (1)

Second, let uS for S ⊆ J denote the policy that always services a job in class j ∈ S whenever one

is available. This policy generates an expression about the maximum possible service time and as

such gives us an upper bound for all admissible policies, u ∈ U , as they pertain to classes in S.

If S = j ∈ Ω, then the job is an unopened box and can thus be serviced at most once, so:

λ
uj
j = 1 ⇒ λuj ≤ 1 ∀u ∈ U (2.1)

If S = j ∈ N , then the job is an opened box with associated prize xj . This will only be available

when an unopened box reveals such a prize, and can then be selected. In the scheduling problem,

this is equivalent to being infinitely serviced from then on. As such:

λ
uj
j =

∑
i∈Ω

λ
uj
i pij

β

1− β
⇒ λuj −

∑
i∈Ω

λui pij
β

1− β
≤ 0 ∀u ∈ U (2.2)

To see why, note we’d like to calculate the service time for j under uj which involves the likelihood

of reaching j from any unopened box i. Suppose under uj , the service time for i, λ
uj
i , can be

decomposed into a stream of service probabilities, αit. That is, λ
uj
i = αi0 + αi1β + . . .+ αitβ

t + . . ..
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Then we can write λ
uj
j as:

λ
uj
j =

∑
i∈Ω

[
αi0pij(β + β2 + . . .) + αi1pij(β

2 + β3 + . . .) + αi2pij(β
3 + β4 + . . .) + . . .

]
=
∑
i∈Ω

[
αi0pijβ

1

1− β
+ αi1pijβ

2 1

1− β
+ αi2pijβ

3 1

1− β
+ . . .

]
=
∑
i∈Ω

λ
uj
i pij

β

1− β

Finally, for the singleton sets, if S = j = 0 then the job is the outside option which is available

from the start and can be serviced immediately and indefinitely. Then:

λ
uj
j =

1

1− β
⇒ λuj ≤

1

1− β
∀u ∈ U (2.3)

With inequalities 2.1, 2.2, and 2.3, we can build conservation laws for all subsets, S, providing

upper bounds on the total service times for jobs in those subsets. Conveniently, these subsets fall

into only two interesting cases.

In the first, if 0 ∈ S, then the subset of jobs can be serviced immediately and indefinitely by

servicing the outside option. This gives us the following, mostly redundant, inequality:

∑
j∈S

λuSj =
1

1− β
⇒

∑
j∈S

λuj ≤
1

1− β
∀u ∈ U (3.1)

For the second, suppose 0 /∈ S. Then S can be partitioned into two sets: SΩ := S ∩ Ω, and

SN := S∩N . As before, we’d like to find the maximum possible total service time. The following

priority policy intuitively achieves this maximum:

1. Service all jobs in SΩ.

2. If any job from SΩ has transitioned into a class from SN , service this job indefinitely.

3. If no job from SΩ has transitioned into a class from SN , then service remaining jobs in

Ω\SΩ, until a job transitions into a class from SN and then service this job indefinitely.

We can evaluate this policy as:

∑
j∈S

λuSj =
1− β|SΩ|

1− β
+ β|S

Ω|
[
1−

∏
i∈SΩ

(1−
∑
j∈SN

pij)
][ 1

1− β

]
+
[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
][ ∑
i∈Ω\SΩ

λuSi
∑
j∈SN

pij
β

1− β

]

The first expression is the discounted value of the first |SΩ| time steps, achieved by servicing the
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unopened boxes in S. Simplifying this expression:

∑
j∈S

λuSj =
1

1− β

1− β|SΩ|
[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
][

1− β
∑

i∈Ω\SΩ

λuSi
∑
j∈SN

pij

]
Rearranging to follow convention that choice variables are collected on the left-hand side of the

constraints, we have our final conservation law:

∑
j∈S

λuj−β|S
Ω|
[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
][ ∑
i∈Ω\SΩ

λui
∑
j∈SN

pij
β

1− β

]
≤ 1

1− β

[
1−β|SΩ|

[ ∏
i∈SΩ

(1−
∑
j∈SN

pij)
]]
∀u ∈ U

(3.2)

Inequalities 3.1 and 3.2 generalise the singleton set expressions, and as such, along with 1, they

define the maximal service time region, L:

L := {λ ∈ R|J |+ | λ satisfy 1, 3.1, and 3.2}

A.2 Sufficiency

Bertsimas and Niño-Mora (1996) show that if the feasible space of service times satisfy general-

ized conservation laws, then they can be represented as an extended polymatroid. This means that

optimizing a linear objective over the feasible space will not only yield an extreme solution, but

the extreme solution is characterized by a priority-index over classes. Conditional on one further

assumption on the structure of the feasible space, the index is also decomposable. These are the

subject of Bertsimas and Niño-Mora (1996)’s Theorem 1, 2, and 3.

The scheduling problem presented here is a special case of the classic multiarmed bandit problem.

In particular, it is a multiarm bandit with one intransient arm, the outside option, and N transient

arms, the unopened boxes. The transient arms are available from the start, and stochastically map

into payoff-varied intransient arms, the opened boxes. The multiarmed bandit problem is shown

to be a satisfy Bertsimas and Niño-Mora’s generalized conservation laws in Proposition 8 and

Theorem 11. Given our problem is simpler than the general multiarm bandit problem, these

results are refined and restated in the following theorem.

Theorem 1 The performance region, Λ, is the extended polymatroid defined by the maximal

service region, L. Further, for each class j ∈ J there exists indices, z, depending only on char-

acteristics of that class, such that an optimal policy is to schedule a job with the largest current

index.

Proof: See Bertsimas and Niño-Mora (1996), Proposition 8 and Theorem 11. �
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Note that, in its original generality, this reproves the celebrated result of Gittins and Jones (1974):

there exists a decomposable index that dictates the optimal scheduling of projects in the multiarmed

bandit problem. For our problem, this proves that the schedule’s solution is also characterized by

a decomposable priority-index, which we can directly take advantage of.

A.3 Pandora’s schedule

Making the most of these properties, we can explicitly solve for the optimal schedule.

Theorem 2 The solution to Pandora’s schedule is given by an indexing rule defined by an index,

z, where if j ∈ N ∪ {0} then zj = rj, and, if j ∈ Ω, then zj is the solution to:

−rj =
∑
i∈N
ri>zj

pji(ri − zj)

Proof: As outlined in section A.2, Pandora’s scheduling problem satisfies Bertsimas and Niño-

Mora’s generalized conservation laws and so the feasible space of achievable performance is an

extended polymatroid. Optimization of a linear objective over an extended polymatroid is solved

by an adaptive greedy algorithm, which leads to an optimal solution having the indexability prop-

erty. Further, this extends to the decomposability property, which means the indices must apply

to all sub-problems.

Normalize the index for the outside option as the value of the outside option itself: z0 = r0. Now,

if j ∈ N ∪ {0}, then zj > z0 if and only if rj > r0 as, if J = {0, j}, then Pandora must service

the highest prize thereafter for her schedule to be optimal. As r0 could take any value, then it

must be that, for all j ∈ N ∪ {0}, zj = rj .

Now suppose j ∈ Ω and again consider J = {0, j}. If zj = z0, then Pandora must be indifferent

between servicing j and servicing the outside option indefinitely:

rj +
∑

ri>r0, i∈N
pjiri +

∑
ri≤r0, i∈N

pjir0 = r0

where the continuation value after servicing j is fixed by the indexibility of the solution and

already pinned down values of zj for all j ∈ N ∪ {0}. Rearranging and substituting zj = z0 and

z0 = r0:

−rj =
∑

ri>zj , i∈N
pji(ri − zj)

Then, we’ve pinned down the value of the index, modulo the normalized index for the outside

option. �
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Pandora’s rule is then given by the limiting behaviour of the optimal schedule, referred to as

Pandora’s schedule.

Corollary 2 As β → 1, Pandora’s schedule is precisely Pandora’s rule.

B Single-agent environment

B.1 Local incentive compatibility

Firstly, we have n(n − 1) constraints to obey. The following lemmas reduce the number of

constraints to track.

Lemma 1 Incentive compatibility implies the differential is monotone increasing. That is, ICpq

and ICqp imply ∆(p) ≥ ∆(q) for all p > q.

Proof: Rearranging ICpq and ICqp:

ICpq : y`(p) + p∆(p) ≥ y`(q) + p∆(q)

ICqp : y`(q) + q∆(q) ≥ y`(p) + q∆(p)

Subtracting the right hand side from ICqp from the left hand side from ICpq and vice versa gives

us the following inequality:

p∆(p)− q∆(p) ≥ p∆(q)− q∆(q)

And finally rearranging:

[p− q] · [∆(p)−∆(q)] ≥ 0

Thus, if p > q it must be that ∆(p) ≥ ∆(q) and vice versa. �

Lemma 2 Local upward (downward) incentive compatibility and differential monotonicity implies

global upward (downward) incentive compatibility. That is, ICpq, ICqr and ∆(p) increasing implies

ICpr for all p < q < r (or p > q > r).

Proof: Collecting the guaranteed allocations and the differential in ICpq, ICqr gives us:

ICpq : y`(p)− y`(q) ≥ p[∆(q)−∆(p)]

ICqr : y`(q)− y`(r) ≥ q[∆(r)−∆(q)]

Adding the left hand and right hand sides gives us the following inequality:

y`(p)− y`(r) ≥ p[∆(q)−∆(p)] + q[∆(r)−∆(q)]
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Adding and subtracting p∆(r) to the right hand side and rearranging:

y`(p)− y`(r) ≥ p[∆(r)−∆(p)] + [q − p][∆(r)−∆(q)]

The final term is positive when p < q < r (or when p > q > r) as ∆ is monotone. Then it must

be true that:

y`(p)− y`(r) ≥ p[∆(r)−∆(p)]

Which is precisely the collected form of ICpr. �

Lemma 3 Binding upward (downward) incentive compatibility and differential monotonicty im-

plies downward (upward) incentive compatibility. That is, ICpq binds and ∆(p) increasing implies

ICqp for all p < q (p > q).

Proof: The collected representation of ICpq is:

ICpq : y`(p)− y`(q) = p[∆(q)−∆(p)]

If q > p, then ∆(q) − ∆(p) ≥ 0 as ∆ is monotone, (and if q < p, then ∆(q) − ∆(p) ≤ 0) so

replacing p with q implies:

y`(p)− y`(q) ≤ q[∆(q)−∆(p)]

y`(q)− y`(p) ≥ q[∆(p)−∆(q)]

Which is precisely the collected representation of ICqp. �

So far, these lemmas show that local incentive compatibility and the allocation differential matter.

Order and index P so that pi > pj if i < j. We will also promote the index i to the argument

where it does not cause confusion.

Lemma 4 Local upward incentive compatibility binds under the second-best policy. That is, if

λ = λ∗, then ICi,i+1 binds for every i < n.

Proof: Let p = c
β , and recall that if p ≥ p then Pandora’s value increases if λa and λh are raised

at a ratio of 1 : pβ
1−β , and if p < p, then Pandora’s value increases if λa and λh are proportionately

lowered. Also note, that under λ = λ∗ for any p, it cannot be that β
1−βλa > max{λhp ,

λ`
1−p}, as

then lowering λa directly increases Pandora’s value without violating any constraints.

There are two cases to consider: pi < p and pi ≥ p.
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Suppose pi < p, and ICi,i+1 does not bind. Then:

ICi−1,i : λh(i− 1) + λ`(i− 1) ≥ pi−1

pi
λh(i) +

1− pi−1

1− pi
λ`(i)

ICi,i+1 : λh(i) + λ`(i) >
pi
pi+1

λh(i+ 1) +
1− pi

1− pi+1
λ`(i+ 1)

Now, lowering λ`(i) increases Pandora’s value, tightens ICi,i+1 and relaxes ICi−1,i (if it exists), a

contradiction. Then, either ICi,i+1 binds or λ`(i) = 0.

If λ`(i) = 0, then lowering λa(i) and λh(i) by a ratio of 1 : pβ
1−β increases Pandora’s value,

tightens ICi,i+1 and relaxes ICi−1,i (if it exists), a contradiction. Then, either ICi,i+1 binds or

λa(i) = λh(i) = 0.

If λa(i) = λh(i) = λ`(i) = 0, then u(i) = 0 which is the lower bound for payoffs and thus cannot

strictly exceed u(i+ 1|i), a contradiction. So ICi,i+1 must bind if pi < p.

Suppose pi ≥ p, and ICi,i+1 does not bind. Then:

ICi−1,i : λh(i− 1) + λ`(i− 1) ≥ pi−1

pi
λh(i) +

1− pi−1

1− pi
λ`(i)

ICi,i+1 : λh(i) + λ`(i) >
pi
pi+1

λh(i+ 1) +
1− pi

1− pi+1
λ`(i+ 1)

As before, lowering λ`(i) increases Pandora’s value, tightens ICi,i+1 and relaxes ICi−1,i (if it ex-

ists), a contradiction. Then, either ICi,i+1 binds or λ`(i) = 0.

If λ`(i) = 0, then raising λa(i+ 1) and λh(i+ 1) by a ratio of 1 : pi+1β
1−β increases Pandora’s value,

tightens ICi,i+1 and relaxes ICi+1,i+2 (if it exists), a contradiction. Then, either ICi,i+1 binds or

λa(i+ 1) = 1 and λh(i+ 1) = pi+1β
1−β .

If λ`(i) = 0, λa(i+ 1) = 1 and λh(i+ 1) = pi+1β
1−β then the right-hand side of ICi,i+1 is given by:

pi
β

1− β
+

1− pi+1

1− pi+2
λ`(i+ 1)

and the left-hand side is λh(i) which is necessarily less than or equal to pi
β

1−β , a contradiction.

So ICi,i+1 must bind if pi ≥ p. �

These lemmas reduce the number of incentive compatibility constraints from n(n− 1) inequality

constraints, to n − 1 equality constraints, ICi,i+1 binds for all i < n, and n − 1 inequality

constraints, ∆(i) ≤ ∆(i+ 1) for all i < n.
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B.2 A change of variables

The pair of inequalities,

− piβ

1− β
λa(i) + λh(i) ≤ 0

−(1− pi)β
1− β

λa(i) + λ`(i) ≤ 0

describe a cone in R3.

To find the generators we can focus on the extreme points of:

− piβ

1− β
λa(i) + λh(i) + s1 = 0

−(1− pi)β
1− β

λa(i) + λ`(i) + s2 = 0

λa(i) + λh(i) + λ`(i) = 1

λa(i), λh(i), λ`(i), s1, s2 ≥ 0

We have three equations and five variables. So, in an extreme point solution, at least two variables

must be zero.

1. s1 = s2 = 0

λa(i) =
1

piβ
1−β + (1−pi)β

1−β + 1

λh(i) =

piβ
1−β

piβ
1−β + (1−pi)β

1−β + 1

λ`(i) =

(1−pi)β
1−β

piβ
1−β + (1−pi)β

1−β + 1

2. s1 = 0, λ`(i) = 0

λa(i) =
1

1 + piβ
1−β

λh(i) =

piβ
1−β

1 + piβ
1−β

3. s2 = 0, λh(i) = 0

λa(i) =
1

1 + (1−pi)β
1−β
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λ`(i) =

(1−pi)β
1−β

1 + (1−pi)β
1−β

4. λh(i) = λ`(i) = 0

λa(i) = 1

5. For all other combinations there is no feasible solution.

Therefore, we can take as our generators:

(1, 0, 0), (1,
piβ

1− β
,
(1− pi)β

1− β
), (1,

piβ

1− β
, 0), (1, 0,

(1− pi)β
1− β

)

Any (λa(i), λh(i), λ`(i)) in the cone can be expressed as a non-negative linear combination of the

generators. Denote the weights of the linear combination by wi, xi, yi, zi. Hence,

λa(i) = wi + xi + yi + zi

λh(i) = [xi + yi]
piβ

1− β

λ`(i) = [xi + zi]
(1− pi)β

1− β
These have a nice interpretation. For a box with type i,

• wi is the mass assigned to opening them without keeping them,

• xi is the mass assigned to opening them and unconditionally keeping,

• yi is the mass assigned to opening them and keeping only if i has a high draw, and

• zi is the mass assigned to opening them and keeping only if i has a low draw.

B.3 Duality

With this change of variables we can write our optimization problem for type i as

max−c[wi + xi + yi + zi] + (1− β)[xi + yi]
piβ

1− β
− (1− β)[xi + zi]

(1− pi)β
1− β

s.t. [wi + xi + yi + zi] + [xi + yi]
piβ

1− β
+ [xi + zi]

(1− pi)β
1− β

+ λ0(i) =
1

1− β
wi + xi + yi + zi ≤ 1

wi, xi, zi, λ0(i) ≥ 0
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Let the expected return from unconditionally allocating to i be mi := pi − (1 − pi). Then this

simplifies to

max−cwi + (miβ − c)xi + (piβ − c)yi + (−(1− pi)β − c)zi

s.t. wi + (1 +
β

1− β
)xi + (1 +

piβ

1− β
)yi + (1 +

(1− pi)β
1− β

))zi + λ0(i) =
1

1− β
wi + xi + yi + zi ≤ 1

Simplifying further

max−cwi + (miβ − c)xi + (piβ − c)yi + (−(1− pi)β − c)zi

s.t. (1− β)wi + xi + (1− (1− pi)β)yi + (1− piβ)zi + (1− β)λ0(i) = 1

wi + xi + yi + zi ≤ 1

It is easy to see that we always set wi = zi = 0. The problem reduces to

max(miβ − c)xi + (piβ − c)yi

s.t. xi + (1− (1− pi)β)yi + (1− β)λ0(i) = 1

xi + yi ≤ 1

And, as pi > mi for all pi < 1, the solution is given by xi = 0 and yi = 1 if piβ − c > 0, and 0

otherwise, with λ0(i) set to the residual.

Now let’s incorporate montonicity and incentive compatibility. Under the change of variables,

∆(pi) =
λh(pi)

pi
− λ`(pi)

1− pi
= [xi + yi]

β

1− β
− [xi + zi]

β

1− β
=

β

1− β
(yi − zi).

Hence, ∆(pi) ≥ ∆(pi−1) implies that

yi − zi ≥ yi−1 − zi−1.

Recall the upward adjacent IC constraint:

ICi−1,i : λh(i− 1) + λ`(i− 1) ≥ pi−1

pi
λh(i) +

1− pi−1

1− pi
λ`(i)

This becomes

[xi−1 + yi−1]
pi−1β

1− β
+ [xi−1 + zi−1]

(1− pi−1)β

1− β
≥ pi−1[xi + yi]

β

1− β
+ (1− pi−1)[xi + zi]

β

1− β

⇒ pi−1[xi−1 + yi−1] + (1− pi−1)[xi−1 + zi−1] ≥ pi−1[xi + yi] + (1− pi−1)[xi + zi]
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⇒ xi−1 + pi−1yi−1 + (1− pi−1)zi−1 ≥ xi + pi−1yi + (1− pi−1)zi

Notice, we can still get away with setting wi = 0, as the variable is absent from both constraints.

Let πi be the probability that the agent is of type pi. The grand (or primal) problem is

V = max
∑
i

πi[(miβ − c)xi + (piβ − c)yi + (−(1− pi)β − c)zi]

s.t. xi + (1− (1− pi)β)yi + (1− piβ)zi + (1− β)λ0(i) = 1 ∀i (ai)

xi + yi + zi ≤ 1 ∀i (bi)

yi−1 − zi−1 ≤ yi − zi ∀i > 1 (d(i− 1, i))

xi + pi−1yi + (1− pi−1)zi ≤ xi−1 + pi−1yi−1 + (1− pi−1)zi−1 ∀i > 1 (e(i− 1, i))

xi, yi, zi, λ0(i) ≥ 0 ∀i

The dual variables appear in red brackets next to each constraint. The dual is

W = min
∑
i

ai + bi

s.t. ai + bi + e(i− 1, i)− e(i, i+ 1) ≥ πi(miβ − c) ∀i (xi)

(1− (1− pi)β)ai + bi − d(i− 1, i) + d(i, i+ 1) + pi−1e(i− 1, i)− pie(i, i+ 1) ≥ πi(piβ − c) ∀i (yi)

(1−piβ)ai+bi+d(i−1, i)−d(i, i+1)+(1−pi−1)e(i−1, i)−(1−pi)e(i, i+1) ≥ πi(−(1−pi)β−c) ∀i (zi)

(1− β)ai ≥ 0 ∀i (λ0(i))

ai, bi, d(i− 1, i), e(i− 1, i) ≥ 0 ∀i with d(0, 1) = e(0, 1) = d(n, n+ 1) = e(n, n+ 1) = 0

The primal variables appear in blue brackets next to each constraint.

Note that, for all i, the right-hand sides of the constraints are ordered:

piβ − c ≥ miβ − c ≥ −(1− pi)β − c
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where the first inequality is strict if pi < 1 and the second if pi > 0.

We will now use duality to show there are only three types of solution to our problem:

• Full ideal inspection: Open any box i and keep only if i has a high draw,

xi = zi = 0 and yi = 1 for all i

• Partial separation: Given a threshold t, open any box i that is above t and keep only if i has

a high draw, and open box any i below t with probability pt and unconditionally allocate,

xi = zi = 0 and yi = 1 for all i > t

xi = pt and zi = yi = 0 for all i ≤ t

• No allocation: Never open any box i,

xi = zi = yi = 0 for all i

As a demonstration, we have the following immediate result.

Proposition 1 Full ideal inspection is optimal if all types are sufficiently high, and no allocation

is optimal if all types are sufficiently low. That is,

• if piβ − c ≥ 0 for all i, then xi = zi = 0 and yi = 1 for all i is optimal, and

• if piβ − c ≤ 0 for all i, then xi = zi = yi = 0 for all i is optimal.

Proof: By duality, if the value of a feasible solution to the primal is equal to the value of a

feasible solution to the dual, these solutions are optimal. As such, if we can find a feasible solution

to the dual with the same value as the conjectured solution, we’ve proved optimality.

Begin with xi = zi = 0 and yi = 1 for all i. Clearly this is feasible - making sure to set

λ0(i) = (1−pi)β
1−β for all i) - with monotonicity and incentive compatibility binding for each i. The

primal value for this solution is:

V =
∑
i

πi(piβ − c)

For the dual, complementary slackness gives us ai = 0 and that the second constraint should bind.

Set bi = πi(piβ − c) and e(i, i + 1) = 0 and d(i, i + 1) = 0 for all i. Then, clearly the first and

third constraints are satisfied by the ordering of the right-hand sides, and bi ≥ 0 if piβ − c ≥ 0.

The dual value for this solution is:

W =
∑
i

πi(piβ − c)
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Now consider xi = zi = yi = 0 for all i. Clearly this is feasible - making sure to set λ0(i) = 1
1−β

for all i - with monotonicity and incentive compatibility binding for each i. The primal value for

this solution is:

V = 0

For the dual, complementary slackness gives us ai = 0. Set bi = 0, e(i, i+1) = 0 and d(i, i+1) = 0

for all i. Then, clearly the first, second, and third constraints are satisfied if 0 ≥ πi(piβ − c) and

by the ordering of the right-hand sides. The dual value for this solution is:

W = 0

Then these two are indeed optimal solutions to the primal given their associated condition. �

This result should be unsurprising: if the first best is incentive compatible, then the first best is

achievable. The interesting case is when types fall on either side of this threshold and the first

best isn’t achievable, which is described by the following result.

Proposition 2 Partial separation is optimal if the first best treats different types differently and

if the value of partial separation is positive. That is, if p1β − c < 0 and pnβ − c > 0, and V ≥ 0,

then the optimal solution is given by

• xi = zi = 0 and yi = 1 if i > t, and

• xi = pt and zi = yi = 0 if i ≤ t,

where t is set to maximise

Vt =
∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c)

If V ≤ 0, no allocation is optimal. That is, xi = zi = yi = 0 for all i.

Proof: To prove this, we will first argue that partial separation is feasible and highlight a few

facts about the threshold, t. Then we will find a feasible dual solution whose value coincides

with partial separation proving the initial result. This dual solution will have the feature that,

if the value of partial separation is negative, then it coincides with no allocation instead and no

allocation has already been shown to be feasible, proving the final result.

Clearly partial separation is feasible - making sure to set λ0(i) = 1−piβ
1−β if i ≤ t and λ0(i) = 1−pt

1−β
if i > t - with incentive compatibility binding for each i and monotonicity binding for all i 6= t.
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The primal value for this solution is:

V =
∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c)

Observe that pt <
c
β . That is, under the first best, type t is not worth inspecting. To show this,

note that:

• if pi ≤ c
β then 0 ≥ piβ − c > miβ − c,

• if c
β < pi ≤ 1

2 + c
2β then piβ − c > 0 ≥ miβ − c, and

• if 1
2 + c

2β < pi then piβ − c ≥ miβ − c > 0.

The proposition assumes c < pnβ ≤ 1 so c
β <

1
2 + c

2β . Now suppose, pt ≥ c
β , and consider lowering

t to s, the highest type such that ps <
c
β . The net change in V is given by

∑
i≤s

πips(miβ − c) +
∑
i>s

πi(piβ − c)−
∑
i≤t

πipt(miβ − c)−
∑
i>t

πi(piβ − c)

⇒ −
∑
i≤s

πi(pt − ps)(miβ − c) +

t∑
i>s

πi[(piβ − c)− pt(miβ − c)] > 0

The inequality comes from the first term being negative as miβ − c < 0 for all i ≤ s, and the

second term being positive as, for any fraction α, piβ− c > 0 ≥ α(miβ− c) if pi ∈ ( cβ ,
1
2 + c

2β ] and

piβ − c > α(miβ − c) > 0 if pi >
1
2 + c

2β . This is a contradiction to the optimality of t.

As t is chosen to maximise V , it must be that,∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c) ≥
∑
i≤t+1

πipt+1(miβ − c) +
∑
i>t+1

πi(piβ − c)

⇒ πt+1(pt+1β − c) ≥ πt+1pt+1(mt+1β − c) +
∑
i≤t

πi(pt+1 − pt)(miβ − c)

⇒ πt+1[(pt+1β − c)− pt+1(mt+1β − c)] ≥
∑
i≤t

πi(pt+1 − pt)(miβ − c)

and similarly,∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c) ≥
∑
i≤t−1

πipt−1(miβ − c) +
∑
i>t−1

πi(piβ − c)

⇒ πtpt(mtβ − c) +
∑
i≤t−1

πi(pt − pt−1)(miβ − c) ≥ πt(ptβ − c)

⇒
∑
i≤t−1

πi(pt − pt−1)(miβ − c) ≥ πt[(ptβ − c)− pt(mtβ − c)]
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Let,

ϕ(i) := πi[(piβ − c)− pi(miβ − c)]−
∑
j≤i−1

πj(pi − pi−1)(mjβ − c)

Then these two conditions can be written succinctly as: ϕ(t+ 1) ≥ 0 ≥ ϕ(t).

Finally, note that ptβ− c > pt(mtβ− c). This follows from 0 ≥ ϕ(t); if ptβ− c ≤ pt(mtβ− c) then

lowering t weakly increases the value of treating type t and lowers the probability of assigning to

all types below t, contradicting the optimality of t.

To find the corresponding dual solution, note that complementary slackness gives us ai = 0 for

all i, and that the first constraint should bind for i ≤ t and the second for i > t. We are looking

for weakly positive values of bi, e(i, i+ 1) and d(i, i+ 1) that are feasible, satisfy complementary

slackness and for which the value function coincides. Ignoring the third constraint and confirming

it’s satisfied at the end, the two constraints of importance are:

bi + e(i− 1, i)− e(i, i+ 1) ≥ πi(miβ − c)

bi − d(i− 1, i) + d(i, i+ 1) + pi−1e(i− 1, i)− pie(i, i+ 1) ≥ πi(piβ − c)

For i ≤ t, set bi = 0. As the first constraint must bind,

e(i, i+ 1)− e(i− 1, i) = −πi(miβ − c)

This is a difference equation and an initial value, e(0, 1), set at 0, so:

e(i, i+ 1) = −πi(miβ − c) + e(i− 1, i)

= −πi(miβ − c) +−πi−1(mi−1β − c) + e(i− 2, i− 1)

= . . .

= −
∑
j≤i

πj(mjβ − c)

Recall that miβ − c < 0 for all pi ≤ t, and so e(i, i+ 1) > 0.

Rearranging the second constraint,

d(i, i+ 1)− d(i− 1, i) ≥ πi(piβ − c) + pie(i, i+ 1)− pi−1e(i− 1, i)
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and substituting for e(i, i+ 1),

d(i, i+ 1)− d(i− 1, i) ≥ πi(piβ − c)− pi
∑
j≤i

πj(mjβ − c) + pi−1

∑
j≤i−1

πj(mjβ − c)

= πi(piβ − c)− piπi(miβ − c)−
∑
j≤i−1

πj(pi − pi−1)(mjβ − c)

= πi[(piβ − c)− pi(miβ − c)]−
∑
j≤i−1

πj(pi − pi−1)(mjβ − c) = ϕ(i)

As we know ϕ(i) ≤ 0 by the optimality of t, then the right hand side is negative, and as such

setting d(i, i+ 1)− d(i− 1, i) = 0 satisfies this inequality.

Now consider the largest type, s, such that the value of partial separating would be negative with

types only below s is negative. That is, the largest s such that,

∑
i≤t

πipt(miβ − c) +
s∑

i=t+1

πi(piβ − c) ≤ 0

Note that ps+1 >
c
β as for the left hand side to be greater than 0 when we increase the index

there must be at least one type such that piβ − c > 0.

For i > t but i ≤ s, once again set bi = 0 and e(i, i+ 1)− e(i− 1, i) = −πi(miβ− c). Even though

this may no longer be positive, we know that as i ≤ s,

∑
j≤t

πjpt(mjβ − c) +

i∑
j=t+1

πj(pjβ − c) ≤ 0

−
∑
j≤i

πj(mjβ − c) +
∑
j≤t

πjpt(mjβ − c) +
i∑

j=t+1

πj(pjβ − c) ≤ −
∑
j≤i

πj(mjβ − c)

−
∑
j≤t

πj(1− pt)(mjβ − c) +

i∑
j=t+1

πj [(pjβ − c)− (mjβ − c)] ≤ e(i, i+ 1)

And this left hand side is positive as mjβ − c < 0 when j and pjβ − c > mjβ − c for all j, so

e(i, i+ 1) must be positive too.

This means, the second, and now binding, constraint simplifies to:

d(i, i+ 1)− d(i− 1, i) = ϕ(i)
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And solving the difference equation:

d(i, i+ 1) = ϕ(i) + d(i− 1, i)

= ϕ(i) + ϕ(i− 1) + d(i− 2, i− 1)

= ϕ(i) + ϕ(i− 1) + . . .+ d(t, t+ 1)

=
i∑

j=t+1

ϕ(j)

We need to show this too is positive. Consider the following:

ϕi = πi[(piβ − c)− pi(miβ − c)]−
∑
j≤i−1

πj(pi − pi−1)(mjβ − c)

ϕi−1 = πi−1[(pi−1β − c)− pi−1(mi−1β − c)]−
∑
j≤i−2

πj(pi−1 − pi−2)(mjβ − c)

⇒ ϕi+ϕi−1 = πi[(piβ−c)−pi(miβ−c)]+πi−1[(pi−1β−c)−pi(mi−1β−c)]−
∑
j≤i−2

πj(pi−pi−2)(mjβ−c)

Repeating this sum gives us:

i∑
j=t+1

ϕ(j) =
i∑

j=t+1

πj [(pjβ − c)− pi(mjβ − c)]−
∑
j≤t

πj(pi − pt)(mjβ − c) ≥ 0

where the inequality comes from: mjβ − c < 0 when j ≤ t and pjβ − c > mjβ − c for all j.

For i = s + 1, set bs+1 = πs+1(ps+1β − c) +
∑

i≤t πipt(miβ − c) +
∑s

i=t+1 πi(piβ − c), and for

i > s+ 1, set bi = πi(piβ− c). Notice that even with e(i, i+ 1)− e(i− 1, i) = 0 the first constraint

holds,

bi + e(i− 1, i)− e(i, i+ 1) = πi(piβ − c) ≥ πi(miβ − c)

and with d(i, i+ 1)− d(i− 1, i) = 0 the second constraint holds with equality,

bi − d(i− 1, i) + d(i, i+ 1) + pi−1e(i− 1, i)− pie(i, i+ 1) = πi(piβ − c)

Further, note that bi > 0 as i ≥ s+ 1 and thus pi >
c
β .

As such, we have a feasible solution to the dual. The value of this solution is

W =
∑
i≤t

πipt(miβ − c) +
∑
i>t

πi(piβ − c)

if s < n, and 0 otherwise. In the later case, we already know of a feasible solution that has V = 0:

xvii



no allocation where xi = yi = zi = 0 for all i.

As such, the values correspond, and these are indeed optimal solutions. �
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