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Abstract

A principal receives an unknown reward from allocating to an agent who has private infor-

mation about the reward. Prior to allocating, the principal may elicit a report from the agent

and inspect them at a cost, but must do so without transfers. When the private information

is noisy, the mechanism that maximizes the principal’s expected return segments signals into

two groups; inspects high types, allocating to them only if the inspected return is sufficiently

positive, and doesn’t inspect low types, compensating them with a small probability of allo-

cation. This relates to a number of applied settings such as employer hiring strategies, public

grant mechanisms, and portfolio investment rules.

1 Overview

Appraising the value of an asset is an essential precursor to its exchange. Employers interview po-

tential employees, public funds assess grant applications, venture capitalists evaluate investment

opportunities. This process is often costly, and information that could be used to lower, or even

circumvent, these costs is often privately held.

This paper considers a principal whose return from allocating to (employing, selecting, support-

ing) an agent is uncertain and inherent to the agent they allocate to. The principal has the ability

to inspect (interview, assess, evaluate) the agent at a cost and learn about the true return, as well

as the opportunity to receive a report from the agent concerning their private information. The

agent, independent of their information, strictly prefers to be allocated to. This paper derives the

optimal use of inspection to determine allocation decisions when the agent’s private information

is imperfect, inspection is costly and transfers are restricted.
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Aislinn Bohren, as well as the feedback from the University of Pennsylvania’s Microeconomic Theory Workshop
and the Australasian Economic Theory Workshop.
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This environment encompasses many important settings. Consider the following three examples.

1. Hiring: a firm, the principal, seeks to fill an open position in their operation with a potential

employee, the agent. The agent would like to be hired and aware of their own characteristics,

has an estimate of their future productivity in this position. The principal can ask for this

estimate, and also interview the agent themselves, discovering a better forecast of their

productivity. The interview, however, is costly for the principal. What interview and hiring

protocol should the firm enact?

2. Funding: a governing board, the principal, sets the rules by which it allocates a scarce,

publicly owned resource, such as funding for an applicant’s project, the agent. The agent

is interested in being approved, valuing their own use above rival uses, and knows the most

about the project’s characteristics and likelihood of success. The principal wants to fund

positive net value projects, perhaps weighing a combination of private and public preferences

for the funding’s use. How should a governing board design assessment and selection rules

to ultimately support socially valuable projects?

3. Investing: a venture capitalist, the principal, determines the way it evaluates and finances

an early investment opportunity, the agent. The principal may be governed by the mo-

tivation to strengthen an existing portfolio or even personal philanthropic concerns, but

is restricted in outlining these preferences publicly. The agent wishes to be financed, and

has the most information about the startup. This information doesn’t fully determine the

investor’s value for the opportunity without an appraisal. How much information can the

investor elicit through their evaluation and funding decisions?

Modelling the agent’s private information as a signal of favourableness, the mechanism that max-

imizes the expected return for the principal has a simple structure. To elicit truthful reports,

the principal segments signals into two groups - high and low. Agents with high signals are al-

ways inspected and only allocated post-inspection if the discovered reward is sufficiently valuable.

Agents with low signals are never inspected, but are compensated for their report with a small

probability of unconditional allocation.

This segmentation is the only optimal mechanism that does not entirely pool signals. That is,

inspection and allocation at most partially-separates signals by screening high from low, and be-

yond this, treats signals in these groups equally. Inspection in this mechanism is deterministic

- high signals are inspected, low signals are not - and the conditional allocation is inefficient -

some agents who are revealed as giving the principal a positive return are rejected. In addition

to under-allocating post-inspection, the principal over-allocates to agents with low types, and

over-inspects some high and low types.
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Alternatively, the principal may find it too costly to partially-separate signals, and instead pool all

signals, treating the agent non-preferentially. They do this by either never inspecting, and allocat-

ing to or rejecting all agents, or always inspecting, and allocating only when the realized return is

positive. The choice between one of these pooling mechanisms and the partially-separating mecha-

nism depends on the prior over the rewards, the agent’s signal accuracy, and the cost of inspection.

In practice, the over-inspecting of low types and the under-allocating post-inspection may require

strong commitment from the principal. This paper also outlines the optimal mechanism when

commitment is relaxed and demonstrates that, to the net detriment of the principal’s objective,

the losses from over-allocating to low types will be magnified and the losses from over-inspecting

and under-allocating post-inspection will be suppressed.

This is related to a branch of the mechanism design literature devoted to costly inspection with

no transfers. In a seminal paper, Ben-Porath, Dekel and Lipman (2014) analyse a model of many

perfectly informed agents and show that inspection - in this treatment, verification - is used to

check the highest reported type above a threshold, providing an adequate incentive for low types

not to masquerade. Inspection is never used to inform the principal of additional information, a

feature that is present in many economic settings. This paper shows that imperfect information

recovers this quality, and demonstrates how to model and analyse the feature.

The next section discusses where this paper fits within the broader literature on information

acquisition in mechanism design. Subsequently, the environment and a benchmark for comparison

is detailed (section 3), followed by a proof of the main results on how inspection is optimally used

to acquire information (section 4). Finally, the main analysis is concluded with how the results

extend to environments where commitment is relaxed (section 5) and a demonstration of when

this mechanism prevails over non-preferential, or pooling, mechanisms (section 6).

2 Related literature

Verification in mechanism design has received widespread interest, notably studied in Green and

Laffont (1986). As mentioned, Ben-Porath, Dekel and Lipman (2014) consider many, perfectly

informed agents and characterise the optimal verification and allocation mechanism. Inspection is

only used for verification as all uncertainty for the principal is resolved after agents have reported

their signals. This paper broadens the scope of inspection by modelling imperfectly informed

agents. Mylovanov and Zapechelnyuk (2017), Epitropou and Vohra (2019) and Erlanson and

Kleiner (2020) explore alternative timings and actions in the perfectly informed agent setting,

though in the single agent environment presented here, they are the same.

There is a growing literature concerning mechanisms with imperfect verification. Pereyra and
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Silva (2021) is the closest in their treatment, but model scarce allocation, costless and imperfect

inspection technologies, and primarily focus on efficient mechanisms. Ball and Kattwinkel (2019)

explore private information and verification, but consider effort choice and transfers. An extension

of the results provided in this paper can be applied to noisy verification, but the focus here is on

imperfectly informed agents.

There is a conceptual difference between verifying an agent’s report and inspecting their inherent

qualities, and this is distinguished here. The literature on scoring rules considers this distinction

and, as in the seminal work of McCarthy (1956) and Savage (1971), outlines mechanisms that

elicit truthful reports of noisy signals, also refered to as beliefs.1 This does not account for the

incentives to collect this information, however, nor the cost in implementing the scoring rule.

The work done here can then be seen as an exploration of optimal scoring rules in allocation

environments without transfers.

Settings with evidence, disclosure, and audits have a long tradition in mechanism design, from

Townsend (1979), to Border and Sobel (1987) and Mookherjee and Png (1989). These primarily

study optimal mechanisms with transfers. The contribution of Alaei et al. (2020) unites many

of their features, with deferred inspection and payments. Recent work has also looked at envi-

ronments with limited transfers such as Mylovanov and Zapechelnyuk (2017), Silva (2019b), Li

(2021), and Patel and Urgun (2022). These papers, and their solutions, can then be directly

compared to the optimal solution presented here to understand what qualitatively changes when

transfers are prohibited.

Finally, an application of the environment presented here concerns judicial mechanism design.

Silva (2019a) and Siegel and Strulovici (2021) explore these topics with similar ideas of noisy

inspection, but their models are less general, tailored to the application and vary along the

dimensions of costs, transfers, and incentives.

3 Environment

A principal receives an unknown, real return, R, from allocating to an agent. If the agent is allo-

cated to, they receive a payoff of 1, and 0 otherwise. Prior to allocation, the principal may inspect

the agent at a cost to their final payoff, c > 0, and in return learn the true value of the reward,

r. The agent has their own private information about the prize, a signal s, which defines their type.

Here, we are considering one principal and one agent. An equivalent setup is a single principal

with k objects to allocate, among ` ≤ k agents, each of whom has unit demand, the same pref-

erences for each object, and an independent signal of the principal’s reward. The problem where

1For an extensive treatment, see Gneiting and Raftery (2007).
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` > k is left for future research.

The agent has a strict preference to be allocated to, and their payoffs are normalized around

this. Changing the intensity of this preference, and even making this intensity type-dependent,

makes no difference to the analysis so long as we maintain the strict preference for allocation. As

such, this normalization is without loss of generality. It will of course matter when interpreting

particular applications and extensions, but this is left to the responsibility of the reader.

The principal has the ability to commit to a rule that determines what they do after any report

and any subsequent realization of the reward. Following the main analysis, we will explore how

the environment changes when we relax this ability, outlined in section 5. One can then think of

the full commitment setting as the most informative case study in understanding this environment.

Direct transfers of value between the principal and agent are not permitted. This reflects the

observation that transfers are seldom used for direct disclosure of information in practice. A

place where we may see transfers occurring is bargaining between the principal and agent once

the principal decides to allocate. We can then interpret this restriction as the principal being

unable to commit to altering later stage bargaining outcomes prior to making their allocation

decision. The model then assumes that the principal’s reward, and the agent’s preference to be

allocated to, reflects the expected outcome of this ensuing bargaining game.

An alternative interpretation is that this is an environment where bargaining does not occur, and

there are many settings where this is true. In some, such as the assignment of public housing, the

use of money is seen as antithetical to the exercise. In others, such as the appointment to public

office, there are commitments from one or both of the parties not to use or accept transfers. And

finally, the entire bargaining power over the value that can be shared may belong to just one of

the parties, and so bargaining does not occur in practical terms.

Even if the restriction isn’t true of an application, it is still important to understand what in-

spection offers the principal in isolation of transfers. This may be for predictive and prescriptive

analysis, or building an understanding of the ways in which we can gather information in different

settings.

The timing and structure of the game is fixed and common knowledge.

1. The principal commits to an inspection and allocation rule; nature assigns signals according

to a commonly known generating process.

2. The agent observes their signal, s, and submits a report to the principal.
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3. The principal implements their rule conditional on the report and any subsequent inspection

realizations that are generated by the rule.

4. All remaining uncertainty is resolved, and net payoffs are awarded.

The primary question to address is which inspection and allocation rule the principal should select

in order to maximize their expected return, subject to the agent’s incentives to report.

This report in practice could be a lengthy and complicated message. Given our objective here is

to study the resulting outcomes and, at most, the total information exchanged by this message,

we will instead work with the direct mechanism by appealing to the revelation principle (Myerson,

1981). That is, we restrict attention to the message game where the agent directly reports their

type, and require that the agent’s expected return from reporting truthfully is weakly greater

than that of reporting any other type.

Listing the principal’s available actions conditional on report s, let:

• x(s) be the inspection probability,

• y(s) be the allocation probability without inspection, and

• z(s, r) be the allocation probability after inspection and realizing reward r.

To fix language, refer to x as the inspection rule, y as the un-inspected allocation rule, and z as

the post-inspection allocation rule. Together, (x, y, z) constitute the principal’s mechanism, and

this mechanism is feasible if:

x(s) ∈ [0, 1], y(s) ∈ [0, 1], z(s, r) ∈ [0, 1] ∀ s, r

Further, let a policy be a particular mechanism that is proposed to maximize some program.

Here we are endowing the principal with the ability to ration the object they’re allocating. In

the hiring example, this can be thought of as limiting the hours the employee works, and in the

funding examples, partially funding the applicant’s project. Partial allocation can also be thought

of as the outcome of a lottery over the object. The decision to inspect may also be partial, in

which case the lottery interpretation is natural.2 It is the lottery interpretation for both choices

that we’ll refer to throughout the paper. What we are restricting here is that allocation can be

at most one, representing the capacity constraint on the principal’s allocation.

The principal chooses this mechanism to maximize their ex ante expected return. At the interim

stage, after learning s, their payoff is determined by two events. They may allocate without

2This could also be a further rationing, however we would then have to claim that inspecting an agent for part
of the object is only partially costly.
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inspecting, receiving the expected return given the signal, and this occurs with the probability

that they don’t inspect, (1 − x(s)), and that they do allocate, y(s). Alternatively, they may

allocate after inspecting and learning the return, r, receiving this net of the inspection cost, c,

which, conditional on r being the true reward, occurs with the probability they do inspect, x(s),

and they do allocate, z(s, r). Let vs refer to the principal’s interim payoff given s.

vs(x, y, z) := (1− x(s))y(s)E(r|s) + x(s)(E(z(s, r) · r|s)− c)

Their ex ante expected return is their expected interim payoff, which we can refer to as the

objective, v.

v(x, y, z) := Es [(1− x(s))y(s)E(r|s) + x(s)(E(z(s, r) · r|s)− c)]

Optimizing involves maximizing the objective subject to the agent’s incentives to report their

private information truthfully. That is, an agent of type s must receive as high a payoff from

reporting s than any other type, ŝ. Given the normalization, the agent’s payoff is the likelihood

of being allocated to by the mechanism, and occurs with the net probability of the two events

outlined above. Let us be the payoff for type s and us,ŝ be the payoff from s reporting ŝ, so that

us,s := us.

us(x, y, z) := (1−x(s))y(s)+x(s)E(z(s, r)|s) ≥ (1−x(ŝ))y(ŝ)+x(ŝ)E(z(ŝ, r)|s) =: us,ŝ(x, y, z) ∀ ŝ

This incentive compatibility constraint for the pair (s, ŝ) is labelled ICs,ŝ for reference. Note that

the agent’s type only augments their return directly through determining the distribution of r

and thus the likelihood of being allocated to conditional on inspection. Given their return is the

net probability of being allocated to, there is no need for an individual rationality constraint as

all type’s receive a weakly positive return.

In total, the program the principal solves is:

max
(x,y,z)

Es [(1− x(s))y(s)E(r|s) + x(s)(E(z(s, r) · r|s)− c)]

s.t. (1− x(s))y(s) + x(s)E(z(s, r)|s) ≥ (1− x(ŝ))y(ŝ) + x(ŝ)E(z(ŝ, r)|s) ∀ ŝ ∀ s

x(s) ∈ [0, 1], y(s) ∈ [0, 1], z(s, r) ∈ [0, 1] ∀ r ∀ s

3.1 Signals

In practice, the agent’s private information could be complicated and nuanced. For a job appli-

cant, this may include educational performance, feedback from colleagues, career ambitions, and

observations about the firm’s hiring decisions. As we are interested in the relative content of this

information, let us collapse this into a single parameter and ask what characteristics we’d like it

to have.
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Let the agent’s information be represented by a private signal, s ∈ {s0, s1, . . . , sN} and suppose

s = sn with probability pn ∈ (0, 1), so that
∑

n pn = 1. Denote Pn as the cumulative mass

function, so that Pn =
∑

m≤n pm.

This paper adopts a discrete formulation of signals for exposition alone. The use of discrete signals

allows us to think clearly about the different incentives that are important to the problem, and

with proposition 1, the main result is extended to an appropriate limiting environment via Helly’s

selection theorem. One could instead conduct this exercise entirely with continuous types, and it

would not provide any substantive additional insights.

Signals are informative of the principal’s allocation reward. If s = sn, let the reward that the

principal receives from allocating to the agent be given by a random variable R|sn ∼ Πn where Πn

is absolutely continuous and admits a density function πn. Denote the unconditional distribution

of the reward R by Π and assume that it is also absolutely continuous, admits a density function π

and has support R = [r, r] ⊆ R. Finally, assume that each of these distributions has a finite mean.

Here, signals have been introduced first and rewards second, but the order in which nature selects

rewards and signals is unimportant so long as the information the players have about these at each

stage remains the same. That is, you could think of the agent as having an underlying reward,

and receiving a signal about this reward which they then report to the principal, or as receiving

as signal and when then they are inspected, or when the game concludes, a reward is generated

given the signal.

The signals have an order conducive to analysis and reflective that higher signals are more

favourable than lower signals. Specifically, we will impose that the signals are completely or-

dered by the monotone likelihood ratio property (MLRP).

πn(r1)

πm(r1)
≥ πn(r0)

πm(r0)
for all r1 > r0 and n > m

That is, higher signals generate higher rewards relatively more likely than lower signals. In this

sense, an agent with a higher signal is more favourable to the principal, and is a notion outlined

by Milgrom (1981) and widely adopted since. This is a reasonable characteristic we’d expect of

the types of private information we’re studying. While the information may be noisy and difficult

to communicate, we’d expect agents to be broadly aware of and agree on which information the

principal values more highly than others.

Another popular ordering is that of first order stochastic dominance (FOSD). A visual demon-

stration of the differences between MLRP and FOSD, and the reason for selecting the former, is

8



highlighted in section 4.1.1. For now, note that MLRP is a stronger notion than FOSD.

Claim 1 If the signals are completely ordered by the monotone likelihood ratio property, they are

ordered by first order stochastic dominance. That is:

Πn(r) ≤ Πm(r) for all r and n > m

Proof: If a higher signal generates higher rewards relatively more likely than lower signals, then

it must be true on average for rewards greater than any fixed reward, r̂, and the reverse must

be true for rewards lower than the fixed reward. Then, 1 − Πn(r̂) ≥ 1 − Πm(r̂) for n > m. A

complete proof is provided in the Appendix. �

Given MLRP, it is convenient and unambiguous to relabel the signals by their induced expected

reward, so that sn := E(r|sn). As such, our information parameter now has a neat interpretation,

and we will call on this interpretation where helpful. We can now state the principal’s problem

explicitly.

Principal’s problem

In return for a report of the agent’s signal, sn, the principal may inspect the agent, xn, allocate to

the agent without inspecting, yn, or allocate to the agent after inspecting and observing r, zn,r.

max
(x,y,z)

∑
n

[(1− xn)ynE(r|sn) + xn(

∫
rzn,rπn,r dr − c)]pn

s.t. (1− xn)yn + xn(

∫
zn,rπn,r dr) ≥ (1− xm)ym + xm(

∫
zm,rπn,r dr) ∀ n,m

0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

For ease of notation, let:

• ψn(z) :=
∫
rzrπn,r dr− c as the expected net reward for the principal from inspecting given

an arbitrary post-inspection allocation rule z, and

• φn(z) :=
∫
zrπn,r dr as the expected allocation to the agent from being inspected given an

arbitrary post-inspection allocation rule z.
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3.2 Symmetric information

As a benchmark, consider a problem where the principal has free and full access to the agent’s

private information, whose solution we refer to as the first-best policy.

max
(x,y,z)

∑
n

[(1− xn)ynE(r|sn) + xnψn(zn)]pn

s.t. 0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

Given the agent has nothing additional to report - information is symmetric - the agent has no

strategically relevant actions. This problem is then straightforward to optimize and outlines ex-

actly what preference the principal has for treating each type of agent. This provides a basis for

which to measure the losses associated with the dispersion of information from the principal’s

perspective.

The next claim outlines the first-best policy and, as with all claims, theorems and propositions in

this paper, a sketch of the proof is provided in the main body and a full proof in the appendix. Let

1{Q} be the indicator function that is equal to 1 if the statement Q is true given the arguments,

and 0 otherwise.3

Claim 2 The first-best policy, (x∗n, y
∗
n, z

∗
n), is given by:

• z∗n,r = 1{r ≥ 0},

• y∗n = 1{E(r|sn) ≥ 0}, and

• x∗n = 1{ψn(z∗n) ≥ max{E(r|sn), 0}}.

Proof: Conditional on the decision to inspect, xn, zn,r selects when to allocate post-inspection

and should then be maximized when r ≥ 0 and minimized otherwise. Call this the ideal post-

inspection allocation rule. Similarly, conditional on the decision not to inspect, 1− xn, yn selects

when to allocate without additional information and should then be maximized when E(r|sn) ≥ 0

and minimized otherwise. Finally, xn selects when to inspect, and should be maximized when the

expected net reward for the principal from inspecting given the ideal post-inspection allocation

rule is both greater than outright allocating or outright rejecting. �

This shows that are only three relevant policy combinations of the first-best policy.

1. no allocation, N, given by xn = 0, yn = 0,

2. ideal inspection, I, given by xn = 1, zn,r = 1{r ≥ 0}, and

3The standard definition of an indicator function is 1A(x) := 1 if x ∈ A and 0 if x /∈ A. We’re more interested
in the set A and less in the argument x, so suppress the argument and promote the set.
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3. full allocation, A, given by xn = 0, yn = 1.

Let ψ∗
n := ψn(z∗n,r) be the expected return from ideal inspection. Preferences over these policies

have a fixed order with respect to sn due to the FOSD ordering of the signals.

Claim 3 There exists some sα and sβ, with sα ≤ sβ, such that:

• if sn ≤ sα then 0 ≥ max{ψ∗
n,E(r|sn)},

• if sn ∈ (sα, sβ) then ψ∗
n > max{0,E(r|sn)}, and

• if sn ≥ sβ then E(r|sn) ≥ max{ψ∗
n, 0}.

Proof: By FOSD, the expected return from ideal inspection is increasing in the signal as the

cost is fixed and the likelihood of a positive reward is increasing. As such, ψ∗
n has a single crossing

with 0, after which ideal inspection is preferred to no allocation. Label the corresponding crossing

signal as sα if it’s negative and 0 otherwise. The rate at which ψ∗
n increases is less than E(r|sn)

increases as the informativeness of the signal must also increase, eventually rendering inspection as

little more informative than the signal itself. As such, ψ∗
n and E(r|sn) also have a single crossing,

after which ideal inspection is less preferred to full allocation. Label the corresponding crossing

signal as sβ if it’s positive and 0 otherwise. �

This shows that there are three regions of interest with respect to the principal’s preferences: low

signals, who the principal would like to reject outright, intermediate signals, who the principal

would like to inspect and allocate if they are shown to yield positive returns, and high signals,

who the principal would like to allocate to outright and save on inspection costs. As such, if

sα ∈ (s0, 0) and sβ ∈ (0, sN ) then tracing out the upper envelope of ψ∗
n, E(r|sn) and 0 gives us the

first-best objective as a function of the signal shown in Figure 1, and the corresponding first-best

policy as a function of the signal shown in Figure 2.

If the return from inspection is high enough for all signals, then ψ∗
n ≥ max{0,E(r|sn)} for all n

and so sα < s0 and sβ > sN . For example, if c = 0 then it’s trivially the case that inspection is

always optimal. Looking forward to the problem where information is privately held, the first-

best policy is then incentive compatible too, as all signals are treated equally. As such, we will

continue under the assumption that either sα > s0 or sβ < sN .

4 Acquiring information

Now let’s return to the problem where the signal is privately held. We will refer to the mechanism

that optimizes this problem as the second-best policy, in contrast to the symmetric information

benchmark. Instead of solving the principal’s problem directly, we will solve a relaxation that

only requires ICn,m to hold for m = n+ 1. These constraints are referred to as the upward local
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s
s0 sNsα sβ

v

ψ∗

E(r|s)

Figure 1: first-best objective, v∗

s
s0 sNsα sβ0

N
x∗n = 0, y∗n = 0

I
x∗n = 1, z∗n,r = 1{r ≥ 0}

A
x∗n = 0, y∗n = 1

Figure 2: first-best policy, (x∗, y∗, z∗)

incentive compatibility (ULIC) constraints.

Relaxed problem

max
(x,y,z)

∑
n

[(1− xn)ynE(r|sn) + xnψn(zn)]pn

s.t. (1− xn)yn + xnφn(zn) ≥ (1− xn+1)yn+1 + xn+1φn(zn+1) ∀ n < N

0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

The first-best policy reveals that the principal would like to preferentially treat higher type agents,

given the favourableness of their information. So we should expect that, under an optimal policy,

agent’s will primarily have an incentive to lie upwards - claim they have a higher signal in order

to receive that preferential treatment - rather than lie downwards. Further, the agent with the

strongest incentive to falsely claim they have a particular type is the agent whose signal is the

closest to that type. This is because the policy is designed for each type to report truthfully, so

it will also be attractive to those that have a similar distribution of rewards.

If the solution to this problem also satisfies the omitted constraints, then it must be an optimal

solution to the principal’s problem. Proceeding with this relaxation shows us that post-inspection
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allocations are threshold rules, each of these constraints bind, and the inspection rule itself is a

threshold rule. This pins down a second-best policy which indeed satisfies the omitted constraints.

4.1 Threshold post-inspection allocation

To derive the optimal policy for this problem, we will first show that the post-inspection allocations

are not only deterministic but only allocate when the realized reward is high.

Claim 4 Optimal post-inspection allocations are threshold rules. That is, for each n there exists

some τn such that:

zn,r = 1{r ≥ τn}

Proof: Suppose (x, y, z) is incentive compatible, optimal, and that for some n, zn is not a

threshold rule. Define τn such that:∫
zn,rπn,r dr =

∫
1{r ≥ τn}πn,r dr

Consider a new policy which replaces zn with this threshold rule about τn. Clearly this is incentive

compatible for n as it’s defined such that they receive the same likelihood of allocation given they

are inspected as before. That is, ICn,n+1 continues to hold.

If n > 0, consider ICn−1,n:

(1− xn−1)yn−1 + xn−1(

∫
zn−1,rπn−1,r dr) ≥ (1− xn)yn + xn(

∫
zn,rπn−1,r dr)

This must continue to hold as the transformation of zn shifts allocation weight away from low

rewards and towards high rewards such that sn is fully compensated. As sn and sn−1 are or-

dered by MLRP, this compensation is not enough for sn−1 to also remain indifferent, and thus

the transformation is weakly dominated by the original. As such, the transformation reduces the

right-hand side of ICn−1,n which implies that if the initial policy is incentive compatible for sn−1,

then the new policy is too.

Finally, the new policy must generate a higher return for the principal, given we’ve shifted allo-

cation weight from low values of r to high values of r evaluated under the same distribution, Πn.

This implies (x, y, z) cannot have been optimal, a contradiction of the proposition. �

This says that we can restrict our attention to post-inspection allocations that are threshold

rules: allocate post-inspection if and only if the reward exceeds some threshold. That is, any

allocation post-inspection, is deterministic. The next example demonstrates the proof graphically

and highlights the role of MLRP over FOSD.
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4.1.1 Example: FOSD or MLRP

Consider Figure 3. The top function, zn is an example of a post-inspection allocation that we

would like to transform into a threshold rule. The middle function, πn, is the reward distribution

under the signal that the principal targets with zn and is normalized to a uniform distribution.

Finally, the bottom function, πn−1, is the reward distribution of a lower signal that we’re protect-

ing from deviating upwards.

0

1

r r

0

2
r−r

r r

0

2
r−r

r r

0

1

r r

0

2
r−r

r r

0

2
r−r

r r

zn

πn

πn−1

zn

πn

πn−1

Figure 3: FOSD (left and right) is not enough for the transformation, but MLRP (right only) is.

There are two examples of πn−1: the left, a distribution that is first order stochastically dominated

by πn but does not follow the monotone likelihood ratio property, and the right, a distribution

that is both first order stochastically dominated by πn and follows the monotone likelihood ratio
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property. Both follow the right mass property given by FOSD: better signals place a greater

likelihood on generating rewards that are higher than any fixed threshold. But only the right

follows MLRP: the relative likelihood of rewards (relative to the higher signal’s likelihood, πn) is

decreasing in the reward.

Transforming zn involves shifting the red mass up to the green deficit. This is done in a way

to make sn indifferent between the rules, and in our example sn assigns the same probability to

these two events: the orange likelihood and the blue likelihood respectfully.

For this transformation to continue to satisfy sn−1’s incentive constraint, without any additional

restrictions on (x, y, z), we must guarantee that deviating to sn’s new policy leaves them no better

off than had they deviated prior under the initial policy. FOSD is not enough to guarantee this

because lower signals may still put a higher relative likelihood of greater rewards than they had

for smaller rewards without violating the total right-mass property given by FOSD. In the left

distribution, sn−1 puts a low (orange) likelihood on the event that r falls in the range where the

principal is reducing the likelihood of allocation, and a high (blue) likelihood on the event where

allocation is now being guaranteed.

MLRP prevents this, as the relative likelihood must be decreasing for higher values of r. As such,

in the right distribution the orange likelihood is greater than the blue likelihood, and so on net

makes sn−1 worse off under the deviation.

The takeaway from this is that FOSD is not enough to guarantee, at this stage, that post-

inspection allocations must be threshold rules. Instead, some restriction on the shape of the

distribution must be made, and in this paper that’s the MLRP.

Claim 4 provides us with some additional structure to the functions ψ and φ, which help to

proceed with determining the optimal policy. In a slight change of notation, we will now refer to

post-inspection allocation, zn, by the threshold, τn, that defines it, so that ψn(τn) and φn(τn), for

example, represent the respective expected values under the threshold rule defined by τn. Note

that φn(τn) is now just the mass above τn, 1−Πn(τn).

4.2 Binding incentive compatibility

With this characteristic, we can see through variation arguments that each upward local incentive

compatibility constraint must hold with equality in any optimal solution. For ease of language,

we’ll say that these constraints bind but do not mean to imply that they have a positive shadow

price. Treating all types equally will, in some environments, be optimal and then for some types

incentive compatibility is free due to feasibility.
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Claim 5 In any optimal mechanism, every upward local incentive compatibility constraint binds.

That is, for all n < N , ICn,n+1 binds:

(1− xn)yn + xnφn(τn) = (1− xn+1)yn+1 + xn+1φn(τn+1)

Proof: Take a feasible, incentive compatible policy, (x, y, z), and suppose that under this policy,

a particular constraint does not bind. To show this cannot be the optimal policy, we need to

find a feasible alternative that will both be incentive compatible and give the principal a higher

expected return. As such, we need to know exactly which policy changes improve the objective.

Clearly, raising τn if τn < 0, or lowering τn if τn > 0, would constitute such an improvement for

any sn, as this involves allocating to less negative reward agents and allocating to more positive

reward agents. Changing xn and yn, however, depends on the agent’s signal.

For a fixed vector of thresholds, τ , consider the following partition of the signal space:

1. S0 := {n | 0 ≥ E(r|sn), 0 ≥ ψn(τn)}

2. Sα := {n | 0 ≥ E(r|sn), ψn(τn) > 0}

3. Sβ := {n | E(r|sn) > 0, ψn(τn) > E(r|sn)}

4. S1 := {n | E(r|sn) > 0, E(r|sn) ≥ ψn(τn)}

This outlines the ideal policy choice given τ : no allocation if n ∈ S0, inspect if n ∈ Sα ∪ Sβ, and

allocate without inspection if n ∈ S1. If τn = 0 for each n, this partition is as described by the

first-best policy and displayed in Figure 2. If τn 6= 0 then ψn(τn) ≤ ψ∗
n as the principal is either

over or under allocating conditional on the realized reward. As such, the S0 and S1 are supersets

of their first-best counterparts, while Sα ∪ Sβ is a subset.

Claim 5.1 in the appendix shows that ICn,n+1 must bind if n ∈ S0 or n+ 1 ∈ S1. If n ∈ S0, then

reducing yn and xn improves the objective as the principal would rather not allocate, and this

tightens ICn,n+1 while only relaxing ICn−1,n. Then, either ICn,n+1 binds, or un = 0 (xn = 0 and

yn = 0) and ICn,n+1 must trivially bind as un,n+1 ≥ 0. Similarly, if n + 1 ∈ S1 then expanding

yn+1 and reducing xn+1 improves the objective as the principal would rather allocate outright,

and tightens ICn,n+1 while only relaxing ICn+1,n+2. Then, either un < 1 but ICn,n+1 binds, or

un = 1 (xn = 0 and yn = 1) and ICn,n+1 must trivially bind as un ≤ 1.

Claims 5.2, 5.3 and 5.4 in the appendix show that ICn,n+1 must bind if n, n + 1 ∈ Sα ∪ Sβ.

Similar to the previous argument, reducing yn if n ∈ Sα, or expanding yn+1 if n + 1 ∈ Sβ, must

improve the objective as the principal would rather not allocate than allocate unconditionally if

n ∈ Sα, and vice versa if n + 1 ∈ Sβ. This tightens ICn,n+1 while only relaxing the adjacent
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constraints. Further, if τn < 0, or τn+1 > 0, we can improve the objective by raising τn, or low-

ering τn+1, as this represents rejecting more negative rewards for τn and accepting more positive

rewards for τn+1. This tightens ICn,n+1 and relaxes the adjacent constraints as the allocation

probability is decreasing in τ . Finally, expanding xn+1 if n ∈ Sα, or expanding xn if n ∈ Sβ,

must increase the objective as these are types the principal wants to inspect, and we can show

that given τn ≥ 0 ≥ τn+1 by the previous argument, this tightens ICn,n+1 and relaxes adjacent

constraints. By exhausting these adjustments, it cannot be that ICn,n+1 holds but does not bind.

Now, we already know S0 < S1 and Sα < Sβ as the value of E(r|sn) is given by the signal struc-

ture and not the policy.4 Then, the only two types of constraints that haven’t been checked are:

n ∈ Sα and n+ 1 ∈ S0, and n ∈ S1 and n+ 1 ∈ Sβ.

Claims 5.5 and 5.6 in the appendix show that ICn,n+1 must bind if either n ∈ Sα and n+ 1 ∈ S0,
or n ∈ S1 and n + 1 ∈ Sβ. As in claims 5.2 and 5.3, reducing yn if n ∈ Sα, expanding yn+1 if

n + 1 ∈ Sβ, raising τn if τn < 0, and lowering τn+1 if τn+1 > 0, must all improve the objective,

tighten ICn,n+1 and relax adjacent constraints. Unlike in the previous claims, however, expanding

xn+1 if n+ 1 ∈ S0, and expanding xn if n ∈ S1, would make the principal worse off. Instead, we

can expand inspection in a way that improves the principal’s return by replicating the inspection

threshold τn if n ∈ Sα, or τn+1 if n+1 ∈ Sβ. As inspection of these agents using these thresholds is

preferable to the principal, it must also be preferable for types n+1 ∈ S0 and n ∈ S1 respectfully.

As before, this will tighten ICn,n+1 and relax adjacent constraints. Finally, by exhausting these

adjustments, it cannot be that ICn,n+1 holds but does not bind.

Then, by claims 5.1 through 5.6, ICn,n+1 must bind for all n. �

This says that in any optimal mechanism, for any n, the expected allocation to sn cannot strictly

exceed their allocation had they reported sn+1 instead. If it does, the principal could do better

by varying the mechanism to tighten this constraint. This then implies the IC constraints form

a chain of equality conditions from u0 to uN , reducing our problem to a simple mathematical

program.

4Here, < refers to the below set relation defined by: set A is below set B, A < B, if ∀a ∈ A and ∀b ∈ B, a < b.
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4.3 Threshold inspection rules

Given claims 4 and 5, we can rewrite our problem as:

max
(x,y,τ)

∑
n

[(1− xn)ynE(r|sn) + xnψn(τn)]pn

s.t. (1− xn)yn + xnφn(τn) = (1− xn+1)yn+1 + xn+1φn(τn+1) ∀ n < N

0 ≤ xn, yn, τn ≤ 1 ∀ r ∀ n

With this, we can conclude that the optimal inspection rule, x, is also a threshold rule and that

the inspected agents face the same post-inspection allocation.

Claim 6 Optimal inspection rules are threshold mechanisms, and the post-inspection allocation

is identical for all agents. That is, there exists some ν and τ such that xn = 1{n > ν} and τn = τ

for all n.

Proof: First observe that:

un = un,n+1

un = (1− xn+1)yn+1 + xn+1φn(τn+1)

un = (1− xn+1)yn+1 + xn+1φn+1(τn+1)− xn+1φn+1(τn+1) + xn+1φn(τn+1)

un = un+1 − xn+1[φn+1(τn+1)− φn(τn+1)]

As φn+1(τn+1) > φn(τn+1) by FOSD, this says that the likelihood of allocation is increasing in sn

and at a rate determined by the inspection rule, x, and the post-inspection allocation threshold, τ .

Note that these two are jointly determined. That is, a choice of x restricts the choice of τ . For

example, suppose for some pair n0 < n1, xn0 = 1, xn1 = 1, and xm = 0 for n0 < m < n1. Then

by the binding constraint τn0 and τn1 must satisfy:

φn0(τn0) = φn1−1(τn1)

If n0 = n1 − 1 then τn0 = τn1 , and if n0 < n1 − 1, then τn0 > τn1 and uniquely determined.

Substituting the arrangement into the objective function we find that, for a fixed yN and τ the

objective is linear in xn, whose only restriction is that xn ∈ [0, 1]:

max
(xn,τn),yN

(1− xN )yNE(r) + xN [φN−1(τN )E(r|s ≤ sN−1)PN−1 + ψN (τN )pN ]

+

N−1∑
n=1

xn[φn−1(τn)E(r|s ≤ sn−1)Pn−1 − φn(τn)E(r|s ≤ sn)Pn + ψn(τn)pn]

+ x0[−φ0(τ0)E(r|s0)p0 + ψ0(τ0)p0]
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Let an be the coefficient on xn in the objective, and observe that an is only a function of τn. We

can immediately conclude:

• xn = 1{an(τn) ≥ 0}, and

• yN = 1{E(r) ≥ 0}.

This means the restrictions on τ in the previous example are the only relevant restriction to our

problem, and as such xn = 1{n > γ} for some γ ∈ {−1, 0, . . . , N} and τn = τ for all n. �

4.4 Optimal mechanism

Following directly from claim 6, we can now state the main theorem. This, and subsequent

results, concern only the non-trivial optimal mechanism, with the pooling mechanisms compared

in section 6.

Theorem 1 The second-best policy (x?, y?, z?) is given by:

• x?n = 1{sn > sγ?},

• y?n = φγ?(τ
?), and

• z?n,r = 1{r ≥ τ?},

where γ? and τ? are the solution to:

max
γ,τ

N∑
n=γ+1

ψn(τ)pn + φγ(τ)E(r|s ≤ sγ)Pγ

Proof: As demonstrated by claim 6, this policy solves the relaxed problem. As such, we are

only left to check that this solution satisfies the omitted IC constraints. Note that, for any γ and

τ , un = φγ(τ) for all n ≤ γ, and un = φn(γ) for all n > γ. As the marginal signal, γ, is indifferent

between the two treatments, by FOSD, all n < γ must strictly prefer the pre-inspection allocation,

and all n > γ must strictly prefer inspection. As such, the global IC constraints are satisfied. �

This gives us a simple maximization problem to solve for our two cut-offs with respect to the

endowed grid of signals, and can be solved using a linear search algorithm. To summarise, the

second-best policy has the following properties: inspection is deterministic and characterised by

a single threshold, post-inspection allocation is also deterministic,and characterised by a separate

and constant threshold, and un-inspected allocation is constant and given by the likelihood the

marginal type would be allocated to had they been inspected.
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To gather intuition on what determines these cut-offs, consider extending the signal grid to a

real interval. Suppose now, instead the agents signal, s, is drawn from a continuous, increasing

distribution Π with the same MLRP outlined in section 3.1.

Proposition 1 The second-best policy (x?, y?, z?) is given by:

• x?s = 1{s ≥ sγ?},

• y?s = φγ?(τ
?), and

• z?s,r = 1{r ≥ τ?},

where γ? and τ? are the solution to:

φγ(τ)E(r|sγ) = ψγ(τ) and τ =

[
πsγ ,τPsγ∫ sN

sγ
πs,τps ds

]
(−E(r|s ≤ sγ))

Proof: By Helly’s selection theorem, a uniformly bounded sequence of monotone real functions

admits a convergent subsequence. Given the policy described in theorem 1 is defined by bounded,

monotone, real functions, the limiting policy is also an optima of the continuous problem. Finally,

the conditions on γ and τ are derived using standard calculus arguments. �

As such, if sα ∈ (s0, 0) and sβ ∈ (0, sN ) then tracing out the second-best objective as a function

of the signal as shown in Figure 4, and a second-best policy as a function of the signal as shown

in Figure 5.

To read these, note that we are using the same signal-value space as Figure 1 to display the

second-best objective and the same signal space as Figure 2 to display the second-best policy.

Also included are the relevant cutoffs for comparison.

As described in Proposition 1, signals below sγ are given a fixed likelihood of un-inspected al-

location and thus the value is negative and decreasing linearly in type. Call this policy partial

allocation, P, and is highlighted in purple. Those signals above sγ are inspected with probability

one and only allocated to if the realised reward is sufficiently positive. As such the value is increas-

ing in signal, akin to ideal inspection, though necessarily below that of ideal inspection due to the

positive inspection threshold. Call this policy sub-ideal inspection, I+, and is highlighted in green.

The cutoff’s intuitively optimise the principal’s concessions. Consider first the the marginal sig-

nal for inspection, γ, for a fixed threshold, τ . Lowering γ includes the signal to the inspection

pool, adding their inspection value to the principals objective, and reduces the necessary partial

allocation to all lower signals. Starting by setting γ at α, lowering would incur a very small

negative value for the principal in requiring them to inspect γ but lowers the partial allocation

20



s
s0

sN

sα

sβ

sγ

v

ψ∗

ψ(τ?)

E(r|s)

φγ(τ?)E(r|s)

Figure 4: second-best objective, v?
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Figure 5: second-best policy, (x?, y?, z?)

to all lower signals. Likewise, by setting γ at 0, increasing γ saves the principal a large negative

value in inspecting sγ and only requires them to be paid the likelihood they are allocated to

post inspection, which is necessarily small. We can thus conclude, γ ∈ (0, α). Now consider the

choice of inspection threshold, τ , for a fixed γ. Decreasing τ from 0 would both lower the returns

from inspection by accepting marginally negative rewards and increase the allocation to low types

and thus cannot be optimal. Increasing τ from 0 however, while also lowering the return from

inspection by rejecting marginally positive rewards, reduces the allocation to low types improving

the objective. As such we can conclude that τ > 0.

This exercise - where one first holds the inspection threshold, considers the optimal choice of γ,

then re-selects τ - conveniently follows how one would naturally relax commitment in this envi-

ronment and is detailed explicitly in section 5.

Comparing the first-best and second-best objectives, we can characterize the losses for the prin-

cipal associated with private information in terms of the agent’s signal.

Proposition 2 The first-best objective exceeds the second-best objective for all signals. That is,

• for s ∈ [s0, sγ ], v∗s = 0 ≥ φγ(τ?) = v?s ,
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• for s ∈ (sγ , sβ), v∗s = ψ∗ ≥ ψ(τ?) = v?s , and

• for s ∈ [sβ, sN ], v∗s = E(r|s) ≥ ψ(τ?) = v?s .

This says that are four types of losses for the principal introduced by the agent’s private infor-

mation:

• Over-allocation at the bottom: agents who’s private information would be sufficient to reject

without inspection, s ∈ [s0, sγ ], are allocated to with positive probability to elicit truthful

reports.

• Over-inspection at the bottom: agents who’s private information would be marginally suf-

ficient to reject without inspection, s ∈ (sγ , sα), are inspected to reduce pre-inspection

allocation to lower types.

• Over-inspection at the top: agents who’s private information would be sufficient to guarantee

allocation, s ∈ (sβ, sN ], are inspected in order to elicit truthful reports of lower agents.

• Under-allocation post inspection: agents who are inspected, s ∈ (sγ , sN ], and who generate

a marginally positive reward, r ∈ [0, τ?), are rejected in order to reduce pre-inspection

allocation to lower types.

When these losses are less than those associated with the pooling policies, this partial separation

is optimal for the principal.

5 Relaxing commitment

At each stage of the game we can consider relaxing the assumption that the principal can commit

to a mechanism. This leads to three natural relaxations of full commitment in this environment.

1. pre-inspection commitment, or partial commitment : the principal can commit to a pre-

inspection allocation, y, and an inspection rule, x, but cannot commit to a post-inspection

allocation, z,

2. pre-assessment commitment, or limited commitment : the principal can commit to a pre-

inspection allocation, y, but cannot commit to an inspection rule, x, or a post-inspection

allocation, z, and

3. no commitment: the principal has no commitment at all, that is they cannot commit to

any policy, (x, y, z).

Under no commitment, the principal can only choose between the pooling equilibria, as reports

convey no information. This is referred to as the third-best policy - the policy that optimizes the

principal’s objective when they cannot elicit, or don’t have access to, any additional information.

We know what this looks like and will return to this in section 6. For now, let’s consider the first

two relaxations.
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5.1 Pre-inspection commitment

Suppose the principal can commit to a pre-inspection allocation, y, and an inspection rule, x, but

cannot commit to a post-inspection allocation, z. This may be the case in hiring settings where, for

due-diligence or de-biasing purposes, the recruitment-to-interview stage may be strategic but steps

have been taken so that the inspection or final assessment is objective e.g. delegated assessment

and assessment by committee. Conveniently, the approach we’ve taken allows us to re-optimise

while fixing τ = 0.

Proposition 3 The second-best policy (x?, y?, z?) under partial commitment is given by:

• x?s = 1{s ≥ sδ},

• y?s = φ∗δ, and

• z?s,r = z∗s,r = 1{r ≥ 0},

where δ is the solution to φ∗δE(r|sδ) = ψ∗
δ .

As such, if sα ∈ (s0, 0) and sβ ∈ (0, sN ) then tracing out the second-best objective as a function

of the signal as shown in Figure 6, and a second-best policy as a function of the signal as shown

in Figure 7.

Intuitively, δ is lower than γ as the principal can no longer threaten to raise the inspection standard

to get away with allocating less to low signals. As such, they’re left to inspect more signals in order

to achieve the same purpose. While the inefficiencies post-inspection have vanished - marginally

positive revealed rewards are no longer rejected - the over-allocation to low signals has increased,

and necessarily the principal is worse-off overall.

5.2 Pre-assessment commitment

Now suppose the principal can commit to a pre-inspection allocation, y, but cannot commit

to an inspection rule, x, or a post-inspection allocation, z. This is an even lower amount of

commitment and is essentially the non-ability to treat reported types deferentially. Consider

our firm from before, however now even the recruitment decision is done by delegation. It may

appear that the firm cannot act strategically in any sense however they can lean on the menu

interpretation of mechanism design to utilise y. They can do this by making a take it or leave

it offer to applicants before they have revealed their type: apply and be assessed ideally, or walk

away and take some partial allocation. Once again, our proof acts as a recipe for optimisation,

this time holding γ = α and τ = 0.

Proposition 4 The second-best policy (x?, y?, z?) under limited commitment is given by:

• x?s = 1{s ≥ sα},
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Figure 7: second-best policy under partial commitment, (x?, y?, z?)

• y?s = φ∗α, and

• z?s,r = z∗s,r = 1{r ≥ 0},

where α is the solution to ψ∗
α = 0.

As such, if sα ∈ (s0, 0) and sβ ∈ (0, sN ) then tracing out the second-best objective as a function

of the signal as shown in Figure 8, and a second-best policy as a function of the signal as shown

in Figure 9.

Once again, the interpretation is natural and all of the relevant analysis has already been outlined.

Now, to the net detriment of the principals objective, the over-inspection of low types has vanished

but the over-allocation to low signals has been exacerbated.

6 Comparative statics

Our attention so far has been directed at the non-trivial optimal mechanism. We may then want

to know under what conditions this mechanism is optimal against mechanisms that treat all agents

non-differentially - pooling mechanisms. We may also want to know how the partially separating

mechanism itself change under changes to the environment, an exercise known as comparative
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Figure 9: second-best policy under limited commitment, (x?, y?, z?)

statics.

Let us consider the Gaussian environment, which provides enough structure on the setting that

we can conduct this exercise in full. As demonstrated in proposition 1, extending these results

to a continuous signal space poses no issue so long as the prior and posterior distributions are

consistent. The normal distribution in particular satisfies MLRP if the variance is fixed across

signals, and so lends itself to providing a clean example for particular comparative statics.

Suppose the prior over the rewards, Π, is given by: r ∼ N(µ, 1), and the agent receives a signal

of their reward determined by: ŝ = r + ε, where ε ∼ N(0, σ2). This implies the distribution

of signals, P̂ , is given by: ŝ ∼ N(µ, σ2 + 1). Together this generates a posterior distribution of

rewards, Πŝ, that’s given by: r|ŝ ∼ N(s, σ̂2) where:

s =
σ2

σ2 + 1

[
µ+

ŝ

σ2

]
and σ̂2 =

σ2

σ2 + 1

It is without loss to relabel the signal ŝ by its induced expected value s, which defines our induced

distribution of signals, P , given by: s ∼ N(µ, 1
σ2+1

). Finally, define the precision, α, of the signal

as α := 1/σ2.
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Then, the environment is fully defined by the triple (µ, α, c) where:

• µ is the ex-ante expected reward of allocating to an agent,

• α is the precision of the agent’s signal of the reward, and

• c is the inspection cost to the principal.

For each combination of (µ, α, c), it’s straightforward to evaluate the four competing mechanisms

the principal entertains.

• N, no allocation, given by xs = 0, ys = 0 for all s,

• I, full (ideal) inspection, given by xs = 1, zs,r = 1{r ≥ 0} for all s,

• A, full allocation, given by xs = 0, ys = 1 for all s, and

• S, semi-separation, given by proposition 1.

As a baseline, consider the problem where the principal can only use their prior information,

whose solution is referred to as the third-best policy. Then, the principal has to select, and is the

same problem as the no commitment relaxation. For a fixed, reasonable c, this policy is plotted

in figure 10 as a function of α and µ.

N, no allocation

I, full inspection

A, full allocation

−1 α
0

µ

0

α

1

Figure 10: third-best policy as a function of precision, α, and prior mean, µ

In the third-best, the principal cannot condition on the signal, so a change in the signal precision

does not change the optimal policy. Changing the prior mean, however, changes the expected
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return from allocating and the expected return from inspecting and as such we cycle through the

three candidate policies.

Now, we can compare this directly with our second-best policy, plotted in figure 11 as a function

of α and µ.5

The relationship between the policy regions is, again, intuitive. Separation always benefits from

an increase in signal accuracy as it allows the principal to treat signals even more deferentially.

Even if the prior mean is very low, a high accuracy allows to principal to separate out high signals

that, while are now rarer, are also more certain to be worth inspection and allocation. On the

other-hand, if the prior mean is very high, even with very accurate signals, the principal can

avoid the cost of inspection altogether by allocating to all signals and risk allocating to a poor

but now rare type. Finally, if signals are very inaccurate, then there is little to gain even from the

partial-separation that this mechanism allows, and so is not enough to entice the principal away

from a fully pooling mechanism.

N, no allocation

I, full inspection

A, full allocation

S, semi-separation

−1 α
0

µ

0

α

1

Figure 11: second-best policy as a function of precision, α, and prior mean, µ

7 Summary

In this paper, we’ve seen that when information is noisy and privately held, costly efforts to

acquire this information involve both verification and discovery. This concerns activities such as

5Note, that there is no natural scale for precision - both linear and logarithmic scales have their benefits and
drawbacks - so this is only a sketch of the four regions rather than a precise map. The replication exercise however
is trivial given the setup.
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employer interviews, project assessments and investment evaluation. In these settings, informa-

tion is useful for an allocation decision that the holders of the private information value, and

necessarily, decisions regarding inspection and allocation account for these incentives.

To maximize their expected return, the principal segments signals into two groups, high and low.

Agents with high signals are always inspected and only allocated post-inspection if the reward is

sufficiently valuable. Agents with low signals are never inspected, compensated for their report

with a small probability of unconditional allocation. This demonstrates that inspection has two

purposes in the absence of transfers: the verification of private information by separating signals,

and the discovery of additional information by conditioning allocation decisions upon the result

of an inspection.

We’ve discovered the conditions under which this mechanism is optimal, and shown that if these

conditions are not met, the principal can only select from non-preferential, or pooling, mecha-

nisms: either universally inspecting, unconditionally allocating or blanket rejecting. We’ve also

seen how this extends to many reasonable relaxations of the principal’s ability to commit, and

explored the cost that this comes at.

The framework provided here can be extended to many additional problems for economic analysis.

Immediately, analogous results with noise on the inspection process can be derived, showing that

the principal employs a similar mechanism to discipline reports in an environment with noisy

verification. One could also extend the analysis to various meta-games. For example, including

a prior selection of signal precision, or allowing the principal to impose an application cost on

the agents, requires no additional modelling assumptions and is a straightforward application of

this paper’s contributions. Analysis of a capacity-constrained principal with multiple privately

informed agents is substantially more complicated, and is left for future research.
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A Environment

One might consider two orderings on the signal space that capture the important features of

private information for an economic setting such as this.

A1. The signals are ordered by first order stochastic dominance (FOSD): Πn(r) ≤ Πm(r)

for all r if n > m.

A2. The signals bear the monotone likelihood ratio property (MLRP): πn(r1)/πm(r1) ≥
πn(r0)/πm(r0) for all r1 > r0 and n > m.

Claim 1 A2 implies A1.

Proof: Rearranging the condition in A2 for some r1 > r0 and n > m:

πn(r1)πm(r0) ≥ πn(r0)πm(r1)

We can integrate this expression up to r1 with respect to r0 to get:∫ r1

πn(r1)πm(r0)dr0 ≥
∫ r1

πn(r0)πm(r1)dr0

πn(r1)Πm(r1) ≥ Πn(r1)πm(r1)

πn(r1)

πm(r1)
≥ Πn(r1)

Πm(r1)

Similarly, we can also integrate the original expression down to r0 with respect to r1 to get:∫
r0

πn(r1)πm(r0)dr1 ≥
∫
r0

πn(r0)πm(r1)dr1

(1−Πn(r0))πm(r0) ≥ πn(r0)(1−Πm(r0))

1−Πn(r0)

1−Πm(r0)
≥ πn(r0)

πm(r0)

Combining and rearranging these last two expressions for any particular r = r0 = r1 gives us A1:

Πm(r) ≥ Πn(r)

�
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A.1 Symmetric information

If the solution to the problem,

max
(xn,yn,zn)

∑
n

[(1− xn)ynE(r|sn) + xn(

∫
rzn,rπn,r dr − c)]pn

s.t. 0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

is the first-best policy, then:

Claim 2 The first-best policy (x∗n, y
∗
n, z

∗
n) is given by:

• z∗n,r = 1{r ≥ 0},

• y∗n = 1{E(r|sn) ≥ 0}, and

• x∗n = 1{ψn(z∗n) ≥ max{E(r|sn), 0}}.

Proof: If zn,r < 1 for some r > 0 then increasing zn,r weakly increases the objective function, and

if zn,r > 0 for some r < 0 then decreasing zn,r weakly increases the objective function. Similarly

if yn < 1 for some E(r|sn) > 0 then increasing yn weakly increases the objective function, and if

yn > 0 for some E(r|sn) < 0 then decreasing yn weakly increases the objective function. Then,

the only weakly unimprovable policies are zn,r = 1{r ≥ 0} and yn = 1{E(r|sn) ≥ 0}. Given this,

the objective is linear in xn and so the maximum is obtained by selecting the larger coefficient:

setting xn = 1 when ψn(z∗n) ≥ max{E(r|sn), 0}, and 0 otherwise. �

And there are only three relevant policy combinations of this policy with a fixed order with respect

to sn:

Claim 3 There exists some sα and sβ, with sα ≤ sβ, such that:

• if sn ≤ sα then 0 ≥ max{ψ∗
n,E(r|sn)},

• if sn ∈ (sα, sβ) then ψ∗
n > max{0,E(r|sn)}, and

• if sn ≥ sβ then E(r|sn) ≥ max{ψ∗
n, 0}.

Proof: We will prove this claim by constructing thresholds s̃α and s̃β and adjusting them to

match the succinct claim.

By FOSD, ψ∗
n is increasing in n, as c is fixed and the likelihood that r > 0 is increasing. As such

there exists a s̃α such that ψ∗
n > 0 if sn > s̃α. Note that trivially we can set s̃α as any value less

than s0 if ψ∗
0 > 0 and any value greater than sN if ψ∗

N < 0.
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Additionally, there exists a s̃β such that ψ∗
n < E(r|sn) if sn > s̃β. To see this, observe that the

following are equivalent:

ψ∗
n < E(r|sn)∫

1{r ≥ 0}rπn,r dr − c <
∫
rπn,r dr

−c <
∫
1{r < 0}rπn,r dr

and as 1{r < 0} ·r is increasing in r, the right hand side is increasing in n by FOSD. As before we

can set s̃β as any value less than s0 if ψ∗
0 < E(r|s0) and any value greater than sN if ψ∗

N > E(r|sN ).

Finally by definition sn = E(r|sn) and so E(r|sn) > 0 when sn > 0. This means that s̃α is only

policy relevant when less than 0 and s̃β when greater than zero. As such, define sα = min{s̃α, 0}
and sβ = max{s̃β, 0}. �

B Acquiring information

Claims 4, 5, and 6 relate to the following relaxation.

Relaxed problem:

max
(xn,yn,zn)

∑
n

[(1− xn)ynE(r|sn) + xn(

∫
rzn,rπn,r dr − c)]pn

s.t. (1− xn)yn + xn(

∫
zn,rπn,r dr) ≥ (1− xn+1)yn+1 + xn+1(

∫
zn+1,rπn,r dr) ∀ n < N

0 ≤ xn, yn, zn,r ≤ 1 ∀ r ∀ n

B.1 Threshold post-inspection rules

Claim 4 Optimal post-inspection allocations are threshold rules. That is, for each n there exists

some τn such that:

zn,r = 1{r ≥ τn}

Proof: Suppose (x, y, z) is incentive compatible, optimal, and that for some n, zn is not a

threshold rule. Define τn such that:∫
zn,rπn,r dr =

∫
1{r ≥ τn}πn,r dr

Given Πn is absolutely continuous, τn is well-defined.
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Consider a new policy which replaces zn with this threshold post-inspection rule about τn. Clearly

this is incentive compatible for n as it’s defined such that they receive the same likelihood of al-

location given they are inspected as before. That is, ICn,n+1 continues to hold.

Now consider ICn−1,n:

(1− xn−1)yn−1 + xn−1(

∫
zn−1,rπn−1,r dr) ≥ (1− xn)yn + xn(

∫
zn,rπn−1,r dr)

We’d like to show this continues to hold under the new policy. That is:

(1− xn−1)yn−1 + xn−1(

∫
zn−1,rπn−1,r dr) ≥ (1− xn)yn + xn(

∫
1{r ≥ τn}πn−1,r dr)

Note that we can rewrite the right-hand side of the original constraint by decomposing zn,r into

the threshold rule and the residual that would reconstitute zn,r:

(1− xn)yn + xn(

∫
zn,rπn−1,r dr)

= (1− xn)yn + xn(

∫
1{r ≥ τn}πn−1,r dr) + xn(

∫ τn

zn,rπn−1,r dr −
∫
τn

(1− zn,r)πn−1,r dr)

By MLRP, πn−1,r ≥ πn,r
πn−1,τn
πn,τn

if r < τn and πn−1,r ≤ πn,r
πn−1,τn
πn,τn

if r > τn. As such, the

right-hand side of ICn−1,n must be,

≥ (1− xn)yn + xn(

∫
1{r ≥ τn}πn−1,r dr) + xn

πn−1,τn

πn,τn
(

∫ τn

zn,rπn,r dr −
∫
τn

(1− zn,r)πn,r dr)

= (1− xn)yn + xn(

∫
1{r ≥ τn}πn−1,r dr) + xn

πn−1,τn

πn,τn
(

∫
1{r ≥ τn}πn,r dr −

∫
zn,rπn,r dr)

= (1− xn)yn + xn(

∫
1{r ≥ τn}πn−1,r dr)

Where the final equality comes from the definition of τn. As such, if the initial policy is incentive

compatible for n− 1, then the new policy is also incentive compatible.

Finally, the new policy must generate a higher return for the principal, given we’ve shifted allo-

cation weight from low values of r to high values of r evaluated under the same Πn. Another way

of showing this is that 1{r ≥ τn}Πn stochastically dominates znΠn and the principal evaluates an

increasing function, r, with respect to these censored distributions. This implies (x, y, z) cannot

have been optimal, a contradiction of the proposition. �
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B.2 Binding incentive compatibility

Claim 5 In any optimal mechanism, every upward local incentive compatibility constraint binds.

That is, for all n < N , ICn,n+1 binds:

(1− xn)yn + xnφn(τn) = (1− xn+1)yn+1 + xn+1φn(τn+1)

Proof: Consider the following partition of the signal space:

1. S0 := {n|0 ≥ E(r|sn), 0 ≥ ψn(τn)}

2. Sα := {n|0 ≥ E(r|sn), ψn(τn) > 0}

3. Sβ := {n|E(r|sn) > 0, ψn(τn) > E(r|sn)}

4. S1 := {n|E(r|sn) > 0, E(r|sn) ≥ ψn(τn)}

In each of the following arguments, the approach is the same: suppose a particular type of con-

straint does not bind for a solution (x, y, z) and find a feasible policy improvement, contradicting

the optimality of the proposed solution.

Claim 5.1 If n ∈ S0 or n+ 1 ∈ S1, ICn,n+1 binds.

Proof: Suppose n ∈ S0 and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then reducing yn and xn improves the objective as 0 ≥ E(r|sn) and 0 ≥ ψn(τn), and decreases

the left-hand side so tightens ICn,n+1. Further, this only relaxes ICn−1,n.

∴ Either un = 0 (xn = 0 and yn = 0), or ICn,n+1 binds. Note that if un = 0 then ICn,n+1 trivially

binds as un,n+1 ≥ 0.

Now consider n+ 1 ∈ S1 and suppose ICn,n+1 doesn’t bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then expanding yn+1 and reducing xn+1 improves the objective as E(r|sn+1) > 0 and E(r|sn+1) ≥
ψn+1(τn+1), and increases the right-hand side so tightens ICn,n+1. Further, this only relaxes

ICn+1,n+2.

∴ Either un+1 = 1 (xn+1 = 0 and yn+1 = 1) or ICn,n+1 binds. Note that if un+1 = 1, then

ICn,n+1 trivially binds as un ≤ 1. �
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Claim 5.2 If n, n+ 1 ∈ Sα, ICn,n+1 binds.

Proof: Suppose n, n+ 1 ∈ Sα and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then reducing yn improves the objective as ψn(τn) ≥ 0 ≥ E(r|sn), and decreases the left-hand

side, so tightens ICn,n+1 and only relaxes ICn−1,n.

Suppose yn = 0 and ICn,n+1 doesn’t bind:

un = xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Suppose τn < 0, then raising τn will improve the objective, decrease the left-hand side and so

tighten ICn,n+1 and only relax ICn−1,n. Similarly, suppose τn+1 > 0, then lowering τn+1 will im-

prove the objective, increase the right-hand side and so tighten ICn,n+1 and only relax ICn+1,n+2.

Suppose yn = 0, τn ≥ 0 and τn+1 ≤ 0 and ICn,n+1 doesn’t bind. Consider expanding xn+1, which

would improve the objective as ψn+1(τn+1) > 0 ≥ E(r|sn+1). This tightens ICn,n+1 if:

0 < −yn+1 + φn(τn+1) ⇒ φn(τn+1) > yn+1

Note that if this is true, then it also relaxes ICn+1,n+2 as φn+1(τn+1) ≥ φn(τn+1) by FOSD.

Suppose by contradiction φn(τn+1) ≤ yn+1, and yn = 0, τn ≥ 0, τn+1 ≤ 0 while ICn,n+1 doesn’t

bind. Then:

un = xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

≥ (1− xn+1)φn(τn+1) + xn+1φn(τn+1)

= φn(τn+1)

But as xnφn(τn) ≤ φn(τn) ≤ φn(0) and φn(τn+1) ≥ φn(0), this is a contradiction. As such, ex-

panding xn+1 must tighten ICn,n+1.

Finally, suppose yn = 0, τn ≥ 0, τn+1 ≤ 0, xn+1 = 1 and ICn,n+1 doesn’t bind:

un = xnφn(τn) > φn(τn+1) = un,n+1

As we’ve already established, this cannot be the case.

∴ ICn,n+1 binds. �

vi



Claim 5.3 If n, n+ 1 ∈ Sβ, ICn,n+1 binds.

Proof: Suppose n, n+ 1 ∈ Sβ and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then expanding yn+1 improves the objective as ψn+1(τn+1) ≥ 0 ≥ E(r|sn+1), and increases the

right-hand side, so tightens ICn,n+1 and only relaxes ICn+1,n+2.

Suppose yn+1 = 1 and ICn,n+1 doesn’t bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

Suppose τn < 0, then raising τn will improve the objective, decrease the left-hand side and so

tighten ICn,n+1 and only relax ICn−1,n. Similarly, suppose τn+1 > 0, then lowering τn+1 will im-

prove the objective, increase the right-hand side and so tighten ICn,n+1 and only relax ICn+1,n+2.

Suppose yn+1 = 1, τn ≥ 0 and τn+1 ≤ 0 and ICn,n+1 doesn’t bind. Consider expanding xn, which

would improve the objective as ψn(τn) > E(r|sn) > 0. This tightens ICn,n+1 if:

−yn + φn(τn) < 0 ⇒ φn(τn) < yn

Note that if this is true, then it also relaxes ICn−1,n as φn−1(τn) ≤ φn(τn) by FOSD.

Suppose by contradiction φn(τn) ≥ yn, and yn+1 = 1, τn ≥ 0, τn+1 ≤ 0 while ICn,n+1 doesn’t

bind. Then:

un = (1− xn)yn + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

(1− xn)φn(τn) + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1)

φn(τn) > (1− xn+1) + xn+1φn(τn+1)

But, φn(τn) ≤ φn(0) and (1 − xn+1) + xn+1φn(τn+1) ≥ φn(τn+1) ≥ φn(0), a contradiction. As

such, expanding xn tightens ICn,n+1.

Finally, suppose yn+1 = 0, τn ≥ 0, τn+1 ≤ 0, xn = 1 and ICn,n+1 doesn’t bind:

un = φn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

As we’ve already established, this cannot be the case.

∴ ICn,n+1 binds. �

vii



So far, we’ve shown constraints within the sets are binding, as well as those leading from S0 or

those leading to S1. Now we’re left to check constraints across the inspection sets.

Claim 5.4 If n ∈ Sα and n+ 1 ∈ Sβ, ICn,n+1 binds.

Proof: Suppose n ∈ Sα, n+ 1 ∈ Sβ and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then, as before, reducing yn, expanding yn+1, raising τn if τn < 0 and lowering τn+1 if τn+1 > 0

all improve the objective, tighten ICn,n+1, relax ICn−1,n and ICn+1,n+2.

Suppose, yn = 0, yn+1 = 1, τn ≥ 0, τn+1 ≤ 0, and ICn,n+1 doesn’t bind:

un = xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

This cannot be the case as xnφn(τn) ≤ φn(τn) ≤ φn(0) and (1 − xn+1) + xn+1φn(τn+1) ≥
φn(τn+1) ≥ φn(0).

∴ ICn,n+1 binds. �

We already know S0 < S1 and Sα < Sβ as the value of E(r|sn) is given by the signal structure

and not the policy.6 So the only two types of constraints to check are: n ∈ Sα, n + 1 ∈ S0 and

n ∈ S1, n+ 1 ∈ Sβ.

Claim 5.5 If n ∈ Sα and n+ 1 ∈ S0, ICn,n+1 binds.

Proof: Suppose n ∈ Sα, n+ 1 ∈ S0 and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then, as in the proof of Claim 5.2, reducing yn, raising τn if τn < 0 and lowering τn+1 if τn+1 > 0

all improve the objective, tighten ICn,n+1 and relax adjacent IC constraints.

Suppose yn = 0, τn ≥ 0, τn+1 ≤ 0, and ICn,n+1 doesn’t bind:

un = xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Also, as in the proof of Claim 5.2, it must be that φn(τn+1) > yn+1. Suppose by contradiction

6Here, < refers to the below set relation defined by: set A is below set B, A < B, if ∀a ∈ A and ∀b ∈ B, a < b.
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φn(τn+1) ≤ yn+1, and yn = 0, τn ≥ 0, τn+1 ≤ 0 while ICn,n+1 doesn’t bind. Then:

un = xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

≥ (1− xn+1)φn(τn+1) + xn+1φn(τn+1)

= φn(τn+1)

But as xnφn(τn) ≤ φn(τn) ≤ φn(0) and φn(τn+1) ≥ φn(0), this is a contradiction.

Now consider reducing the probability that sn+1 is allocated to without inspection, in favour of

inspection using the threshold assigned to sn. In particular, conditional on not inspecting sn+1,

instead of allocating with probability yn+1, allocate with probability λyn+1 and inspect using the

threshold τn with probability (1− λ), for some λ ∈ (0, 1).

This improves the objective as 0 ≥ E(r|sn+1) and ψn+1(τn) > 0. The second fact here comes from

the observation that, despite 0 ≥ ψn+1(τn+1), ψn(τn) > 0 implies ψn+1(τn) > 0. To see this, take

a fixed threshold τ and rearrange:

ψn(τ) > 0∫
1{r ≥ τ}rπn,r dr − c > 0∫

1{r ≥ τ}rπn,r dr > c

As 1{r ≥ τ}r is an increasing function of r when τ > 0, the left-hand side is increasing in n as

ensured by FOSD.

This tightens ICn,n+1 as φn(τn) > yn+1, and does not contradict for small enough λ. To see this,

observe that:

φn(τn) > xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) > yn+1

Which follows the condition that ICn,n+1 didn’t bind and our claim that φn(τn+1) > yn+1.

And this change only relaxes ICn+1,n+2, ensured by FOSD and the same rationale:

φn+1(τn) > xnφn+1(τn) ≥ xnφn(τn) > yn+1

Finally, suppose yn = 0, τn ≥ 0, τn+1 ≤ 0, xn+1 = 1 and ICn,n+1 doesn’t bind:

un = xnφn(τn) > φn(τn+1) = un,n+1

As we’ve already established, this cannot be the case.
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∴ ICn,n+1 binds. �

Claim 5.6 If n ∈ S1 and n+ 1 ∈ Sβ, ICn,n+1 binds.

Proof: Suppose n ∈ S1, n+ 1 ∈ Sβ and ICn,n+1 does not bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1)yn+1 + xn+1φn(τn+1) = un,n+1

Then, as in the proof of Claim 5.3, expanding yn+1, raising τn if τn < 0 and lowering τn+1 if

τn+1 > 0 all improve the objective, tighten ICn,n+1 and relax adjacent IC constraints.

Suppose yn+1 = 1, τn ≥ 0, τn+1 ≤ 0, and ICn,n+1 doesn’t bind:

un = (1− xn)yn + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

Also as in the proof of Claim 5.3, it must be that yn > φn(τn). Suppose by contradiction

φn(τn) ≥ yn, and yn+1 = 1, τn ≥ 0, τn+1 ≤ 0 while ICn,n+1 doesn’t bind. Then:

un = (1− xn)yn + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

(1− xn)φn(τn) + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1)

φn(τn) > (1− xn+1) + xn+1φn(τn+1)

But, φn(τn) ≤ φn(0) and (1− xn+1) + xn+1φn(τn+1) ≥ φn(τn+1) ≥ φn(0), a contradiction.

Now consider reducing the probability that sn is allocated to without inspection, in favour of

inspection using the threshold assigned to sn+1. In particular, conditional on not inspecting sn,

instead of allocating with probability yn, allocate with probability λyn and inspect using the

threshold τn+1 with probability (1− λ), for some λ ∈ (0, 1).

This improves the objective as ψn(τn+1) ≥ E(r|sn). This fact comes from the observation that,

despite E(r|sn) ≥ ψn(τn), ψn+1(τn+1) > E(r|sn+1) implies ψn(τn) > E(r|sn). To see this, take a

fixed threshold τ and rearrange:

ψn+1(τn+1) > E(r|sn+1)∫
1{r ≥ τ}rπn+1,r dr − c >

∫
rπn+1,r dr

−c >
∫
1{r < τ}rπn+1,r dr

As 1{r < τ}r is an increasing function of r when τ < 0, the right-hand side is increasing in n as
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ensured by FOSD.

This tightens ICn,n+1 as yn > φn(τn+1) and does not contradict for λ small enough. To see this,

observe that:

yn > (1− xn)yn + xnφn(τn) > (1− xn+1) + xn+1φn(τn+1) > φn(τn+1)

Which follows from our claim that yn > φn(τn) and the condition that ICn,n+1 didn’t bind.

And this change only relaxes ICn−1,n ensured the same rationale and FOSD:

yn > φn(τn+1) > φn−1(τn+1)

Finally, suppose yn = 0, τn ≥ 0, τn+1 ≤ 0, xn = 1 and ICn,n+1 doesn’t bind:

un = φn(τn) > (1− xn+1) + xn+1φn(τn+1) = un,n+1

As we’ve already established, this cannot be the case.

∴ ICn,n+1 binds. �

Then, by claims 5.1 through 5.6, ICn,n+1 must bind for all n. �

B.3 Threshold inspection rules

Given claims 4 and 5, we can rewrite the principal’s problem as:

max
(xn,yn,τn)

∑
n

[(1− xn)ynE(r|sn) + xnψn(τn)]pn

s.t. (1− xn)yn + xnφn(τn) = (1− xn+1)yn+1 + xn+1φn(τn+1) ∀ n < N

0 ≤ xn, yn, τn ≤ 1 ∀ r ∀ n

Claim 6 Optimal inspection rules are threshold mechanisms. That is, there exists some n0 such

that xn = 1{n ≥ n0}.

Proof: First observe that for each n we can represent (1− xn)yn recursively using the binding
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ICn,n+1 constraints:

(1− xn)yn = (1− xn+1)yn+1 + xn+1φn(τn+1)− xnφn(τn)

= (1− xn+2)yn+2 + xn+2φn+1(τn+2)− xn+1φn+1(τn+1)

+ xn+1φn(τn+1)− xnφn(τn)

= (1− xn+3)yn+3 + xn+3φn+2(τn+3)− xn+2φn+2(τn+2)

+ xn+2φn+1(τn+2)− xn+1φn+1(τn+1)

+ xn+1φn(τn+1)− xnφn(τn)

= · · ·

= (1− xN )yN +
N−1∑
m=n

[xm+1φm(τm+1)− xmφm(τm)]

Which can also be written as the following arrangement:

(1− xn)yn = (1− xN )yN + xNφN−1(τN ) +
N−1∑

m=n+1

xm[φm−1(τm)− φm(τm)]− xnφn(τn)

Note that this also restricts the choice of τ . For example, suppose for some pair n0 < n1, xn0 = 1,

xn1 = 1, and xm = 0 for n0 < m < n1. Then by the binding constraint τn0 and τn1 must satisfy:

φn0(τn0) = φn1−1(τn1)

This says that if n0 = n1 − 1 then τn0 = τn1 , and if n0 < n1 − 1, then τn0 > τn1 and uniquely

determined. We will return to this example after the substitution.
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Substituting the arrangement into the objective function:∑
n

[(1− xn)ynE(r|sn) + xnψn(τn)]pn

=
∑
n

[〈(1− xN )yN +
N−1∑
m=n

[xm+1φm(τm+1)− xmφm(τm)]〉E(r|sn) + xnψn(τn)]pn

= (1− xN )yN
∑
n

E(r|sn)pn +
∑
n

N−1∑
m=n

[xm+1φm(τm+1)− xmφm(τm)]E(r|sn)pn +
∑
n

xnψn(τn)pn

= (1− xN )yN
∑
n

E(r|sn)pn +
N−1∑
m

[xm+1φm(τm+1)− xmφm(τm)]
m∑
n

E(r|sn)pn +
∑
n

xnψn(τn)pn

= (1− xN )yNE(r) +
N−1∑
m

[xm+1φm(τm+1)− xmφm(τm)]E(r|s ≤ sm)Pm +
∑
n

xnψn(τn)pn

This shows us that we that for a fixed yN and τ the objective is linear in xn, whose only restriction

is that xn ∈ [0, 1]:

max
(xn,τn),yN

(1− xN )yNE(r) + xN [φN−1(τN )E(r|s ≤ sN−1)PN−1 + ψN (τN )pN ]

+
N−1∑
n=1

xn[φn−1(τn)E(r|s ≤ sn−1)Pn−1 − φn(τn)E(r|s ≤ sn)Pn + ψn(τn)pn]

+ x0[−φ0(τ0)E(r|s0)p0 + ψ0(τ0)p0]

Let an be the coefficient on xn in the objective, and observe that an is only a function of τn. We

can immediately conclude:

• xn = 1{an(τn) ≥ 0}, and

• yN = 1{E(r) ≥ 0}.

This means the restrictions on τ in the previous example are the only relevant restriction to our

problem, and as such xn = 1{n ≥ γ} for some γ ∈ {0, . . . , N,N + 1} and τn = τ for all n. �
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